PDA

View Full Version : 11638 - Bất đẳng thức 3 biến


n.t.tuan
28-09-2012, 10:40 PM
Chứng minh rằng nếu $a,b$ và $c$ là các số thực dương thì
\[
a^3+b^3+c^3+3\geq 3[(a^2b+1)(b^2c+1)(c^2a+1)]^{1/3}.
\]

JokerNVT
28-09-2012, 10:55 PM
Chứng minh rằng nếu $a,b$ và $c$ là các số thực dương thì
\[
a^3+b^3+c^3+3\geq 3[(a^2b+1)(b^2c+1)(c^2a+1)]^{1/3}.
\]
Bài này là dùng AM-GM:
$$\dfrac{2a^3}{3}+\dfrac{b^3}{3}\ge a^2b$$
Tương tự cho các vế còn lại ta có:
$$VT\ge a^2b+1+b^2c+1+c^2a+1\ge 3\sqrt[3]{(a^2b+1)(b^2c+1)(c^2a+1)}$$ (đpcm :D)