Diễn Đàn MathScope

Diễn Đàn MathScope (http://forum.mathscope.org/index.php)
-   2015 (http://forum.mathscope.org/forumdisplay.php?f=180)
-   -   VMO 2015 - Lời giải và Bình luận (http://forum.mathscope.org/showthread.php?t=49251)

huynhcongbang 19-01-2015 12:41 AM

VMO 2015 - Lời giải và Bình luận
 
1 Attachment(s)
Thế là kỳ thi VMO 2015 đã kết thúc được hơn một tuần và như bao lần khác, vẫn còn nhiều tiếc nuối, nhiều trăn trở đọng lại. Nhưng dù thế nào đi nữa thì có lẽ cái quan trọng hơn hết vẫn là chặng đường học tập, rèn luyện mà các thí sinh đã trải qua. Nó đã và sẽ đem đến nhiều điều quý báu hơn cả những gì mà kết quả kỳ thi thưc sự có thể mang lại.

Tiếp nối "truyền thống" 3 năm qua, năm nay nhóm tác giả cũ vẫn làm việc tập trung, nghiêm túc và đã hoàn thành xong "VMO 2015 - Lời giải và Bình luận". Tài liệu vẫn được biên tập bằng Latex, trình bày cẩn thận và màu sắc có phần phong phú hơn.

Mong rằng sẽ nhận được các góp ý, chia sẻ từ mọi người để tài liệu được hoàn chỉnh hơn và cũng rất hy vọng rằng đây sẽ là một tài liệu tham khảo hữu ích cho các thầy cô, các bạn học sinh chuyên Toán và yêu Toán. :)

tikita 19-01-2015 10:05 AM

Trích:

Nguyên văn bởi huynhcongbang (Post 207697)
Thế là kỳ thi VMO 2015 đã kết thúc được hơn một tuần và như bao lần khác, vẫn còn nhiều tiếc nuối, nhiều trăn trở đọng lại. Nhưng dù thế nào đi nữa thì có lẽ cái quan trọng hơn hết vẫn là chặng đường học tập, rèn luyện mà các thí sinh đã trải qua. Nó đã và sẽ đem đến nhiều điều quý báu hơn cả những gì mà kết quả kỳ thi thưc sự có thể mang lại.

Tiếp nối "truyền thống" 3 năm qua, năm nay nhóm tác giả cũ vẫn làm việc tập trung, nghiêm túc và đã hoàn thành xong "VMO 2015 - Lời giải và Bình luận". Tài liệu vẫn được biên tập bằng Latex, trình bày cẩn thận và màu sắc có phần phong phú hơn.

Mong rằng sẽ nhận được các góp ý, chia sẻ từ mọi người để tài liệu được hoàn chỉnh hơn và cũng rất hy vọng rằng đây sẽ là một tài liệu tham khảo hữu ích cho các thầy cô, các bạn học sinh chuyên Toán và yêu Toán. :)

Mình xin góp ý bài 5. Dòng đầu đánh nhầm ở đoạn $1-x-x^2$. Và một ý khác là việc đa thức $f_n(x)$ chia hết cho đa thức $x^3-x^2+x$ về nguyên tắc không thể suy ra được $f_n(-2)$ chia hết cho $7$ đươc. (vì ta đang xét trên $\mathbb{R}[x]$)(Hiển nhiên lời giải ở đây là đúng vì hệ số đầu của đa thức $x^3-x^2+x$ là $1$)

vinhhop.qt 19-01-2015 10:18 AM

Câu 1b nếu xét dãy $(y_n)$ như trong tài liệu nhưng với $y_1=0$ rồi chứng minh dãy này tăng và bị chặn trên bởi 1 sẽ cho lời giải gọn hơn.

huynhcongbang 19-01-2015 12:01 PM

Trích:

Nguyên văn bởi tikita (Post 207706)
Mình xin góp ý bài 5. Dòng đầu đánh nhầm ở đoạn $1-x-x^2$. Và một ý khác là việc đa thức $f_n(x)$ chia hết cho đa thức $x^3-x^2+x$ về nguyên tắc không thể suy ra được $f_n(-2)$ chia hết cho $7$ đươc. (vì ta đang xét trên $\mathbb{R}[x]$)(Hiển nhiên lời giải ở đây là đúng vì hệ số đầu của đa thức $x^3-x^2+x$ là $1$)

Dạ, em hiểu ý của anh về vấn đề này rồi ạ. Em cũng công nhận là nội dung anh nhận xét ở trên là một thiếu sót tương đối lớn của ban biên tập.

Tuy nhiên, có thể chứng minh được nhận xét sau: Cho đa thức $P(x), Q(x)$ có hệ số nguyên và hệ số cao nhất của $P(x)$ chia hết cho hệ số cao nhất của $Q(x)$. Khi đó, nếu $P(x)$ chia hêt cho $Q(x)$ (dù xét trên $\mathbb{Z}[x]$ hay $\mathbb{R}[x]$ thì đa thức thương nhận được cũng có hệ số nguyên.

Chứng minh theo kiểu chia Horner.

Em xin cảm ơn anh về đóng góp này ạ. :)
------------------------------
Trích:

Nguyên văn bởi vinhhop.qt (Post 207707)
Câu 1b nếu xét dãy $(y_n)$ như trong tài liệu nhưng với $y_1=0$ rồi chứng minh dãy này tăng và bị chặn trên bởi 1 sẽ cho lời giải gọn hơn.

Dạ, hôm trước anh Cẩn cũng có trao đổi với em về việc linh hoạt chọn số hạng đầu của dãy $(y_n)$ nhưng lúc sau kiểm tra lại thử thấy có vẻ chứng minh dãy này tăng và bị chặn trên bởi 1 ở trên cũng không dễ lắm, nếu làm kỹ ra ở đoạn quy nạp. Do em chưa kịp ngồi làm lại thử chi tiết ra nên chưa dám đưa vô.

Em cám ơn thầy đã nhận xét ạ. :)

thaygiaocht 19-01-2015 05:08 PM

Có một bài toán gần với bài toán 5 về tư tưởng
Cho các đa thức $P(x); Q(x); R(x) \in \mathbb{R}[x]$ thỏa mãn $P(x^3)+xQ(x^3)=(x^2+x+1)R(x).$ Chứng minh các đa thức $P(x); Q(x); R(x)$ đều chia hết cho $x-1.$

tranbinh9562 20-01-2015 02:51 PM

Đã vào chấm chưa nhỉ, có ai biết tình hình thế nào ko


Múi giờ GMT. Hiện tại là 04:01 PM.

Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.

[page compression: 9.96 k/10.59 k (5.93%)]