Diễn Đàn MathScope

Diễn Đàn MathScope (http://forum.mathscope.org/index.php)
-   Lý Thuyết Số (http://forum.mathscope.org/forumdisplay.php?f=40)
-   -   Dãy nguyên dừng [IMO2018P5] (http://forum.mathscope.org/showthread.php?t=51899)

Viet HN 10-07-2018 11:47 PM

Dãy nguyên dừng [IMO2018P5]
 
Cho $a_1,\,a_2,\,\ldots$ là một dãy vô hạn các số nguyên dương. Giả sử tồn tại số nguyên dương $N$ sao cho\[\frac{{{a_1}}}{{{a_2}}} + \frac{{{a_2}}}{{{a_3}}} + \ldots + \frac{{{a_{n - 1}}}}{{{a_n}}} + \frac{{{a_n}}}{{{a_1}}} \in \mathbb Z\quad\forall\,n\ge N.\]Chứng minh rằng tồn tại số nguyên dương $M$ sao cho $a_{m+1}=a_m\;\forall\,m\ge M$.

Thụy An 11-07-2018 01:49 AM

Trích:

Nguyên văn bởi Viet HN (Post 213791)
Cho $a_1,\,a_2,\,\ldots$ là một dãy vô hạn các số nguyên dương. Giả sử tồn tại số nguyên dương $N$ sao cho\[\frac{{{a_1}}}{{{a_2}}} + \frac{{{a_2}}}{{{a_3}}} + \ldots + \frac{{{a_{n - 1}}}}{{{a_n}}} + \frac{{{a_n}}}{{{a_1}}} \in \mathbb Z\quad\forall\,n\ge N.\]Chứng minh rằng tồn tại số nguyên dương $M$ sao cho $a_{m+1}=a_m\;\forall\,m\ge M$.

Với $p$ là một số nguyên tố, trước tiên ta có bổ đề (tính chất của định giá phi Archimedean)\[{v_p}\left( {x + y} \right) \ge \min \left\{ {{v_p}\left( x \right),\, {v_p}\left( y \right)} \right\}\quad\forall\, x,\,y\in\mathbb Q.\]Để ý là dấu bằng của bất đẳng thức trên, sẽ xảy đến khi $v_p(x)\ne v_p(y)$. Quay lại bài toán trên, ta có ngay\[\frac{{{a_n}}}{{{a_{n + 1}}}} + \frac{{{a_{n + 1}} - {a_n}}}{{{a_1}}}\in\mathbb Z\quad\forall\,n\ge N,\qquad(1).\]Từ đây, với mọi số nguyên tố $p$ và số nguyên dương $n\ge N$ ta có\[{v_p}\left( {\frac{{{a_n}}}{{{a_{n + 1}}}} + \frac{{{a_{n + 1}} - {a_n}}}{{{a_1}}}} \right) \ge 0\quad\forall\,n\ge N,\qquad(2).\]Giả sử tồn tại số nguyên tố $p$ sao cho ${v_p}\left( {{a_n}} \right) < {v_p}\left( {{a_{n + 1}}} \right)$, với $n\ge N$. Lúc đó, do ${v_p}\left( {\frac{{{a_n}}}{{{a_{n + 1}}}}} \right) < 0$ nên từ tính chất của định giá phi Archimedean và $(2)$, ta có\[{v_p}\left( {\frac{{{a_n}}}{{{a_{n + 1}}}}} \right) = {v_p}\left( {\frac{{{a_{n + 1}} - {a_n}}}{{{a_1}}}} \right) < 0.\]Từ đó có\[0 > {v_p}\left( {{a_n}} \right) - {v_p}\left( {{a_{n + 1}}} \right) = {v_p}\left( {{a_{n + 1}} - {a_n}} \right) - {v_p}\left( {{a_1}} \right) = {v_p}\left( {{a_n}} \right) - {v_p}\left( {{a_1}} \right).\]Tức là $$ {v_p}\left( {{a_n}} \right) < {v_p}\left( {{a_{n + 1}}} \right) = {v_p}\left( {{a_1}} \right).$$Giả sử tồn tại số nguyên tố $p$ sao cho ${v_p}\left( {{a_n}} \right) > {v_p}\left( {{a_{n + 1}}} \right)$, với $n\ge N$. Từ $(2)$ và tính chất phi Archimedean có\[0 \le {v_p}\left( {\frac{{{a_{n + 1}} - {a_n}}}{{{a_1}}}} \right) = {v_p}\left( {{a_{n + 1}} - {a_n}} \right) - {v_p}\left( {{a_1}} \right) = {v_p}\left( {{a_{n + 1}}} \right) - {v_p}\left( {{a_1}} \right).\]Như vậy lại có đánh giá\[{v_p}\left( {{a_1}} \right) \le {v_p}\left( {{a_{n + 1}}} \right) < {v_p}\left( {{a_n}} \right).\]
Tóm lại là với $n\ge N$ thì nếu ${v_p}\left( {{a_n}} \right) < {v_p}\left( {{a_{n + 1}}} \right)$ sẽ có $$ {v_p}\left( {{a_n}} \right) < {v_p}\left( {{a_{n + 1}}} \right) = {v_p}\left( {{a_1}} \right),\;(*).$$ Còn nếu ${v_p}\left( {{a_n}} \right) > {v_p}\left( {{a_{n + 1}}} \right)$ thì sẽ có $${v_p}\left( {{a_1}} \right) \le {v_p}\left( {{a_{n + 1}}} \right) < {v_p}\left( {{a_n}} \right),\;(**).$$
Bây giờ với số nguyên tố $p$ tùy ý, ta xét hai trường hợp
  • Nếu tồn tại $k\ge N$ sao cho ${v_p}\left( {{a_k}} \right) < {v_p}\left( {{a_{k+ 1}}} \right)$ thế thì theo $(*)$ có ${v_p}\left( {{a_{k+ 1}}} \right)={v_p}\left( {{a_{1}}} \right)$. Từ đây ${v_p}\left( {{a_{k+ 2}}} \right)={v_p}\left( {{a_{1}}} \right)$, bởi nếu ${v_p}\left( {{a_{k+ 2}}} \right)>{v_p}\left( {{a_{1}}} \right)={v_p}\left( {{a_{k+1}}} \right)$ thì mâu thuẫn với $(*)$ còn nếu ${v_p}\left( {{a_{k+ 2}}} \right)<{v_p}\left( {{a_{1}}} \right)={v_p}\left( {{a_{k+1}}} \right)$ thì mâu thuẫn với $(**)$. Truy toán sẽ cho ta\[{v_p}\left( {{a_n}} \right) = {v_p}\left( {{a_1}} \right)\quad\forall\,n\ge k+1.\]
  • Nếu không tồn tại $k\ge N$ sao cho ${v_p}\left( {{a_k}} \right) < {v_p}\left( {{a_{k+ 1}}} \right)$ thì có nghĩa là \[{v_p}\left( {{a_n}} \right) \ge {v_p}\left( {{a_{n+1}}} \right)\quad\forall\,n\ge N.\]
Những suy luận trên cho thấy với số nguyên tố $p$ bất kỳ, sẽ tồn tại $N_p$ để có\[{v_p}\left( {{a_{n + 1}}} \right) \le {v_p}\left( {{a_n}} \right)\quad\forall\,n\ge N_p.\]Cũng từ $(*)$ và $(**)$ ta lại thấy ngay là với mọi số nguyên tố $p$ thì \[{v_p}\left( {{a_{n + 1}}} \right) \le \max \left\{ {{v_p}\left( {{a_n}} \right),\,{v_p}\left( {{a_1}} \right)} \right\} \le \max \left\{ {{v_p}\left( {{a_N}} \right),\,{v_p}\left( {{a_1}} \right)} \right\}\quad\forall\,n\ge N.\]Từ đó thấy $a_n$ chỉ có hữu hạn ước nguyên tố. Chọn $M=\max\left\{N_p:\;p\mid a_n,\,n\ge N\right\}$, ta có điều cần chứng minh.

vnt.hnue 16-07-2018 09:46 AM

Em xin góp thêm một cách.
Đặt $a_{1}=a, a_{n}=b, a_{n+1}=x,a_{n+2}=x_{1},... $ với mọi $n$ lớn hơn hoặc bằng $N$.
Suy ra $x|ab$, dẫn đến $\frac{b}{x}+\frac{x-b}{a}=\frac{y}{a}+\frac{x-b}{a}=m$. Ta có hệ sau:
$x+y=ma+b$
$xy=ab$
Nếu $(a,b)>1$, gọi $p$ là một ước nguyên tố chung của $a,b$, thay vào hệ trên được ngay $p|x,p|y$. Vậy ta có thể chia bộ $a,b,x,y$ cho các ước nguyên tố $p$ cho đến khi $(a',b')=1$. Do đó $(a,b)|x_{n}$ với mọi $n$. Ta có:
$x'+y'=ma'+b'$
$x'y'=a'b'$
Suy ra $x'|a'b'$, dẫn đến $x_{n}|[a,b]$ $(1)$ và $(a,b)|x_{n}$
Tương tự, ta cũng có $(a,x_{n})|x_{n+1}$, suy ra
$(a,x_{n})|(a,x_{n+1})$, vậy:
$(a,x_{n})\leq (a,x_{n+1})\leq (a,x_{n+2}) \leq (a,x_{n+2}) \leq ....$
Chứng minh tương tự $(1)$, ta cũng có:
$[a,b] \geq [a,x] \geq ....\geq [a,x_{n}] \geq [a, x_{n+1}] \geq [a,x_{n+2}] \geq...$
Mà $[a,b]$ là hữu hạn nên theo $(1)$ thì tập giá trị của $x_{n}$ là hữu hạn, nhưng dãy $x_{n}$ là vô hạn nên tồn tại dãy con $x_{n_{i}}$ có tất cả các phần tử bằng nhau.
Theo các nhận xét trên, suy ra:
$(a,x_{n_{i}})\leq (a,x_{n_{i}+2})\leq (a,x_{n_{i}+2}) \leq ....\leq (a,x_{n_{i+1}}=(a,x_{n_{i}}))$
$[a,x_{n_{i}}] \geq [a,x_{n_{i}+1}] \geq ....\geq [a,x_{n_{i+1}}] =[a,x_{n_{i}}]$
Do đó $ax_{n_{i}}=ax_{n_{i}+1}=...=ax_{n_{i+1}}$
Dẫn đến $x_{n_{i}}=x_{n_{i}+1}=...=x_{n_{i+1}}$
Chọn $a_{M}=x_{n_{1}}$, ta có điều phải chứng minh.


Múi giờ GMT. Hiện tại là 11:40 AM.

Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.

[page compression: 9.80 k/10.15 k (3.51%)]