Xem bài viết đơn
Old 06-01-2008, 06:17 PM   #2
n.t.tuan
+Thành Viên+
 
n.t.tuan's Avatar
 
Tham gia ngày: Nov 2007
Bài gởi: 1,250
Thanks: 119
Thanked 616 Times in 249 Posts
Từ đầu bài đến đây, chúng tôi đã dùng mà không định nghĩa hai danh từ « hình học » và « tô pô học ». Theo trực quan, mọi người dễ chấp nhận định nghĩa hình học là bộ môn nghiên cứu các hình, dạng. Theo từ nguyên, chữ géométrie (hình học) trong tiếng Hi Lạp lại có nghĩa là đo đạc đất đai. Đối với các nhà toán học Cổ Hi Lạp, không có gì mâu thuẫn giữa hai khái niệm, bởi vì trong quan niệm của họ, khoa học là một thể thống nhất, nó phải vừa giải thích vừa làm chủ Thiên nhiên, nhà hình học và nhà trắc địa đều làm cùng một nghề. Còn thế nào là « nghiên cứu các hình, dạng » ? Hình dạng thì vô số, không thể nào kê khai cho xuể, mà có làm được cũng vô ích. Cho nên cách xử lí tự nhiên nhất là làm thế nào xếp loại theo những tiêu chuẩn nhất định, cũng như nhà thực vật học, nhà côn trùng học xếp cây cỏ, sâu bọ thành loại lớn, loại nhỏ, nhánh, họ... Toán học quan tâm tới cấu trúc, nên các nhà toán học xếp loại các đối tượng họ nghiên cứu bằng cái mà họ gọi là « quan hệ tương đương », tức là những quy tắc biến đổi một đối một mà vẫn giữ nguyên các cấu trúc (phép « đẳng cấu ») ; theo cách xếp loại như vậy, hai cá thể « đẳng cấu » có thể được đồng nhất hoá với nhau (đồng nhất hoá, chứ không đồng nhất, không « bình đẳng », nói rõ như vậy để trả lời những đồ đệ « dậy non » của Jean-Paul Sartre). Ta hãy lấy « analysis situs » của Poincaré làm ví dụ : các cơ cấu mà tô pô học nghiên cứu là những « không gian tô pô », nghĩa là những tập hợp trong đó người ta có thể định nghĩa khái niệm « lân cận », nói nôm na : thế nào là hai điểm « gần » nhau ; một phép đẳng cấu do đó là một phép biến đổi một đối một giữ nguyên được sự « gần nhau » ấy (hai điểm A và B « gần nhau » được biến thành hai điểm A’ và B’ cũng « gần nhau »). Phép đẳng cấu giữa hai không gian tô pô được gọi là phép « đồng phôi » (homéomorphisme), hay nôm na hơn, phép biến dạng liên tục (déformation continue). Cho nên người ta thường gọi tô pô học bằng cái tên nôm na gợi hình là « hình học cao su » : hai cái hình làm bằng màng cao su, thí dụ hình tròn và hình bầu dục, có thể biến hoá cái nọ thành cái kia bằng cách co kéo cái màng cao su mà không làm rách hay phải cắt nó. Có rất nhiều thí dụ dễ hiểu về không gian tô pô. Ai cũng biết những « không gian thực n chiều » mà kí hiệu là Rn : khi n=1 đó là đường thẳng, 2 chiều mặt phẳng (ở trường học, ai chẳng học trên đường thẳng, mỗi điểm được xác định bằng 1 hoành độ, trên mặt phẳng, mỗi điểm được xác định bằng 2 toạ độ), không gian R3 là không gian « quanh ta » mà cơ học Newton nghiên cứu, R4 là không – thời gian của thuyết tương đối (hẹp)... Hình dung ra không gian nhiều chiều cũng không có gì khó : chẳng cần đọc tiểu thuyết viễn tưởng, ta hãy xem sổ hộ tịch trong đó người ta kê khai tên họ, giới tính, tuổi, chiều cao, quốc tịch, tổng cộng là 5 tham số (được mã hoá thành số), mỗi cá nhân với « 5 toạ độ » ấy là một « điểm » trong không gian R5 ! Và để xếp loại các không gian tô pô (không phân biệt các không gian « đồng phôi »), người ta căn cứ vào những cái « bất biến », tức là những tính chất bất biến qua những phép đồng phôi. Để xếp loại côn trùng, các nhà động vật học đếm số chân, số cánh... Đối với các không gian Rn , tất nhiên nhà tô pô học nghĩ tới chiều kích của chúng, và đúng như vậy, một định lí nổi tiếng của Whitney (đầu thế kỉ XX) cho biết rằng hai không gian Rn và Rp đồng phôi với nhau nếu và chỉ nếu n=p. Định lí này dễ cảm nhận bằng trực quan, nhưng muốn chứng minh nó, phải có trình độ tối thiểu là MA đại học về toán, điều này cho thấy sự thâm sâu của những bài toán tô pô học. Một con số – chiều kích n – cũng đủ làm đặc trưng cho các không gian Rn, song sẽ quá ngây thơ nếu ta tưởng rằng đối với các không gian tô pô cũng đơn giản như vậy. Thực ra bài toán đặt ra quá tổng quát, chẳng cần nghiên cứu Sartre (làm sao mà hai cá nhân có thể « bình đằng », « bằng » nhau được ?) cũng có thể nhận thấy. Vì thế, các nhà tô pô học, theo chân Poincaré, sẽ khiêm tốn tự giới hạn trong « các đa tạp tô pô n chiều » mà đại khái ta có thể coi là các « hình » trong hình học đã nói ở trên. Một đa tạp n chiều như vậy là một không gian tô pô « đồng phôi cục bộ » (nghĩa là ở vùng lân cận của mỗi điểm ; chứ nếu « đồng phôi toàn bộ » thì chẳng còn gì để nói nữa) với không gian Rn. Xin lấy một ví dụ để bạn đọc có thể hình dung : Mặt Đất chúng ta đang sống trên đó « nằm trong » không gian (3 chiều) R3, nhưng ở cục bộ mỗi điểm trên địa cầu, nó đồng phôi với R2 (một mặt phẳng, tức là một đa tạp 2 chiều). Nói nôm na : đứng ở bất cứ nơi nào trên Mặt Đất, người quan sát cũng có cảm tưởng nó là mặt phẳng (chứ không phải mặt cầu). Nhưng ai chẳng biết rằng Mặt Đất không phải là mặt phẳng ! Magellan đã chứng minh điều đó khi ông đi một vòng quanh địa cầu. Đối với nhà tô pô học, hiển nhiên là mặt cầu không thể đồng phôi với mặt phẳng : mặt cầu là compac, mặt phẳng không. Tính compac rất khó giải thích bằng ngôn ngữ hàng ngày, song có thể nói thế này : một không gian tô pô nằm trong một không gian Rn, nếu nó compac thì tất nhiên nó « đóng kín, bị chặn » (hai từ này có thể hiểu theo nghĩa đời thường).

Hai kiểu bất biến vừa nói ở trên – chiều kích và tính compac – được coi là « sơ cấp » vì chúng liên quan tới khái niệm lân cận gắn liền với định nghĩa đa tạp. Một trong những đóng góp quan trọng của Henri Poincaré là đề ra một bất biến kiểu mới, là khái niệm « nhóm cơ bản », một khái niệm liên quan tới lí thuyết nhóm. Một đa tạp sẽ được gọi là « liên thông đơn thuần » nếu nhóm cơ bản chỉ vỏn vẹn có một phần tử. Để cảm nhận bằng trực giác khái niệm « liên thông đơn thuần », ta hãy hình dung một mặt cong trên đó ta vẽ một « đường vòng », một thứ « dây thòng lọng » : nếu ta có thể « rút dây », thắt nó nhỏ dần, cho đến khi nó nhỏ tí, thành một điểm mà sợi dây vẫn nằm hoàn toàn trên mặt cong, thì mặt cong có tính « liên thông đơn thuần ». Nói khác đi, một đa tạp liên thông đơn thuần nếu bất cứ đường vòng nào nằm trong đa tạp có thể được biến dạng liên tục thành một điểm. Ta hãy lấy vài ví dụ đa tạp 2 chiều nằm trong không gian 3 chiều R3 : mặt phẳng, mặt cầu rõ ràng là liên thông đơn thuần, ngược lại mặt xuyến (thí dụ nhưng cái săm bánh ô tô hay bánh xe đạp) không liên thông đơn thuần (dây thòng lọng buộc quanh cái săm, « xuyên qua lỗ ở giữa », không thể « thắt » nhỏ thành một điểm mà không cắt đứt cái săm). Như vậy là mặt phẳng, mặt cầu và mặt xuyến là 3 đa tạp không đồng phôi đôi một với nhau : mặt phẳng và mặt cầu vì tính compac, mặt cầu và mặt xuyến vì tính liên thông đơn thuần. Mấy thí dụ trực quan này cho ta hình dung cách đặt vấn đề của ức đoán Poincaré.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
T.
n.t.tuan is offline   Trả Lời Với Trích Dẫn
 
[page compression: 15.72 k/16.77 k (6.25%)]