Xem bài viết đơn
Old 09-05-2012, 01:49 AM   #2
magician_14312
Moderator
 
magician_14312's Avatar
 
Tham gia ngày: Jan 2011
Đến từ: Solar System
Bài gởi: 367
Thanks: 201
Thanked 451 Times in 220 Posts
Các ví dụ đầu tiên có thể dùng chuỗi Fourier để chứng minh.

VD1. $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$

Xét $f(x)=x^2$ là hàm chẵn, liên tục trên $\mathbb{R}$. Khai triển hàm này theo chu kì $2\pi$, trong khoảng $[-\pi;\pi]$.
Các hệ số $b_n=0$, các hệ số còn lại là:
$$a_0=\frac{2}{\pi}\int_{0}^{\pi}x^2dx=\frac{2}{3} \pi ^2$$
$$\begin{align*}
a_n&=\frac{2}{\pi}\int_{0}^{\pi}x^2 \cos nxdx \\
&=\left .\frac{2}{\pi}x^2.\frac{\sin nx}{n} \right | _{0}^{\pi}-\frac{4}{n\pi}\int_{0}^{\pi}x \sin nx dx\\
&= \left .\frac{4}{n\pi}x .\frac{\cos nx}{n} \right |_{0}^{\pi} \\
&=\frac{4}{n^2} \cos n\pi = \frac{(-1)^n .4}{n^2}
\end{align*}$$
Vậy ta có khai triển
$$x^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}(-1)^n.\frac{\cos nx}{n^2}\,\ -\pi \le x \le \pi.$$
Cho $x=\pi$, ta thu được tổng chuỗi số $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.$
_______________________

Với VD2, ta cũng khai triển hàm số $f(x)=x^4$ thành chuỗi Fourier tương tự như trên:
$$a_0=\frac{2}{\pi}\int_{0}^{\pi}x^4=\frac{2}{5} \pi ^4$$
$$a_n=\frac{2}{\pi}\int_{0}^{\pi}x^4 \cos nx dx
= \frac{8 (\pi^2 n^2-6)\cos n\pi}{n^4}$$
Ta được khai triển
$$x^4=\frac{1 }{5}\pi ^4+\sum_{n=1}^{\infty}\frac{8(\pi^2n^2-6)(-1)^n}{n^4}\cos nx
$$
Cho $x=\pi$ ta được
$$\pi^4=\frac{1 }{5}\pi ^4+\sum_{n=1}^{\infty}\frac{8(\pi^2n^2-6)}{n^4}
\Leftrightarrow \frac{4}{5} \pi^4=8\pi^2 \sum_{n=1}^{\infty}\frac{1}{n^2}-48 \sum_{n=1}^{\infty}\frac{1}{n^4}$$
Sử dụng kết quả ở ví dụ 1, thay vào được kết quả $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^2}{90}. $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
...THE MILKY WAY...

thay đổi nội dung bởi: magician_14312, 09-05-2012 lúc 01:54 AM
magician_14312 is offline   Trả Lời Với Trích Dẫn
The Following 3 Users Say Thank You to magician_14312 For This Useful Post:
batigoal (09-05-2012), pco (09-05-2012), teamo (01-06-2012)
 
[page compression: 9.79 k/11.01 k (11.05%)]