Xem bài viết đơn
Old 21-12-2013, 11:13 PM   #5
Juliel
+Thành Viên+
 
Tham gia ngày: Sep 2013
Đến từ: THPT Chuyên Lương Thế Vinh, Biên Hoà, Đồng Nai
Bài gởi: 144
Thanks: 109
Thanked 130 Times in 66 Posts
Bài số $7$ na ná với bài Hàn Quốc 1999, sử dụng bổ đề này với định lí phần dư Trung Hoa. Bài số $8$ là em biến tấu ra từ bài chọn đội tuyển của Mỹ năm $2008$, là bài $n^7+7$ ở trên
Giải bài $\boxed{8}$ : Tìm số tự nhiên $n$ lẻ để $n^{11}+199$ là số chính phương.
***
Bổ đề 1: Cho các số nguyên dương $x,y$ và số nguyên tố $p$ có dạng $4k + 3$ thỏa mãn $p|(x^{2}+y^{2})$. Khi đó $p|x$ và $p|y$

[COLOR="rgb(0, 100, 0)"]Bổ đề 2[/COLOR] : Cho các số nguyên dương $x,y$ thỏa $gcd(x,y)=1$, khi đó mọi ước nguyên tố của $x^{2}+y^{2}$ không có dạng $4k+3$.

Đặt $n^{11}+199=m^{2}$ , $m\in \mathbb{N}$

Vì $n$ lẻ nên $n\equiv 1;3(mod4)$

Nếu $n\equiv 3(mod4)\Rightarrow m^{2}\equiv 3^{11}+199\equiv 2(mod4)$ (vô lí)

Do đó $n\equiv 1(mod4)$

Ta có :

$n^{11}+199=m^{2}\Leftrightarrow n^{11}+2^{11}=m^{2}+43^{2}\Leftrightarrow (n+2)(n^{10}-2n^{9}+...-512n+1024)=m^{2}+43^{2}\Leftrightarrow (n+2).b=m^{2}+43^{2}\qquad(*)$

Vì $n\equiv 1(mod4)\Rightarrow b=n^{10}-n^{9}.2+...-n.2^{9}+2^{10}\equiv 3(mod4)\Rightarrow$ $b$ có ít nhất một ước nguyên tố $p\equiv 3(mod4)$.

Theo bổ đề 1 thì $b|(a^{2}+43^{2})\Rightarrow p|(a^{2}+43^{2})\Rightarrow p|43\Rightarrow p=43\Rightarrow 43|b$

Nếu $43|(n+2)\Rightarrow n\equiv -2(mod43)\Rightarrow b=n^{10}-2n^{9}+4n^{8}-8n^{7}+16n^{6}-32n^{5}+64n^{4}-128n^{3}+256n^{2}-512n+1024\equiv 8(mod43)$.

Điều này là vô lí vì $43|b$. Suy ra $43\nmid(n+2)$.

Ta có $a^{2}+43^{2}=(n+2).b\vdots 43\Rightarrow a\vdots 43\Rightarrow (a^{2}+43^{2})\vdots 43^{2}\Rightarrow b(n+2) \vdots 43^{2}$. Vì $43\nmid(n+2)$ nên $b=43^{2}.m\qquad(m\in \mathbb{N},gcd(m,2)=1)$

Hơn nữa vì $a\vdots 43\Rightarrow a=43q\qquad(q\in \mathbb{N})$

Do đó $(n+2).b=a^{2}+43^{2}=43^{2}.(q^{2}+1)\Leftrightar row (n+2).43^{2}.m=43^{2}(q^{2}+1)\Leftrightarrow q^{2}+1=m(n+2)$

Vì $gcd(1,q)=1$ nện theo bổ đề 2 thì $q^{2}+1$ không có ước nguyên tố nào có dạng $4k + 3$, nhưng $n+2\equiv 3(mod4)$ (vì $n\equiv 1(mod4)$)

Điều này mâu thuẫn.

Kết luận : Không tồn tại số $n$ thỏa mãn đề bài.

Post bài tiếp đi anh Hoàn, em để đâu hết mấy cái đống này rồi
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: Juliel, 21-12-2013 lúc 11:15 PM Lý do: Tự động gộp bài
Juliel is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to Juliel For This Useful Post:
luugiangnam (22-12-2013)
 
[page compression: 10.09 k/11.24 k (10.25%)]