Xem bài viết đơn
Old 02-04-2018, 05:31 PM   #22
Traum
Moderator
 
Traum's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: cyber world
Bài gởi: 413
Thanks: 14
Thanked 466 Times in 171 Posts
Bài 3:
Ta chứng minh hai bổ đề sau:
Bổ đề 1: Cho số nguyên tố $p$. Khi đó nếu $n > 2p$ chia hết cho $p^2$ thì nếu $P_{n/p}$ chia hết cho $x^{r_{n/p}} + 1$ thì $P_{n}$ cũng chia hết cho $x^{r_{n/p}} + 1$.

Chứng minh: Vì $n$ chia hết cho $p^2$ nên với mọi $k < n/p$ mà $(k,n) = 1$ thì $(k+jn/p, n) = 1$ với mọi $j = 0,..,p-1$. Do đó có thể viết lại $P_n(x)$ như sau:$$P_{n}(x) = \sum\limits_{k<n, (k,n) = 1} x^{k-1} = \sum\limits_{k < n/p, (k, n/p) = 1}x^{k-1}\sum\limits_{j=0}^{p-1}x^{jn/p} = P_{n/p}(x)\sum\limits_{j=0}^{p-1}x^{jn/p}.$$ Do đó khẳng định của bổ đề là đúng.

Bổ đề 2: Cho số nguyên tố lẻ $p$. Khi đó nếu với mọi $(n, p) = 1$ thì nếu $P_n(x)$ chia hết cho $x^{r_n} + 1$ thì $P_{np}(x)$ cũng chia hết cho $x^{r_n}+1$.

Chứng minh: Viết $P_{np}(x)$ lại như sau: $$\begin{align*}P_{np} &= \sum\limits_{k < np, (k,n) = 1}x^{k-1} - \sum\limits_{k < np, (k,n) = 1, p | k}x^{k-1} \\&= \left(\sum\limits_{k < n, (k,n) =1}x^{k-1}\right)\left(\sum\limits_{j=0}^{p-1}x^{ja}\right) - x^{p-1}\sum\limits_{k < n, (k,n) = 1}(x^p)^{k-1} \\&= P_n(x)\left(\sum\limits_{j=0}^{p-1}x^{ja}\right) - x^{p-1}P_n(x^p)\end{align*}.$$Mà $x^{pr_n} + 1$ chia hết cho $x^{r_n} +1$, vì $p$ lẻ. Nên ta có $P_{np}$ chia hết cho $x^{r_n}+1$. ĐPCM.

Trở lại bài toán. Từ bổ đề 1, ta chỉ cần chứng minh cho $n > 4$ không có ước chính phương, hay $n = 2p_1...p_l$. Từ bổ đề 2 thì ta chỉ cần chứng minh cho $n=3, 4$, $n = p$ và $n = 2p$ với $p$ nguyên tố lẻ. Mà dễ thấy:
$P_3(x) = 1 + x$, $P_4(x) = 1 + x^2$ đều thỏa mãn.

$P_{p}(x) = 1 + x + \cdots + x^{p-2} = \frac{x^{p-1}-1}{x-1} = (x^{\frac{p-1}{2}}+1)\frac{x^{\frac{p-1}{2}} - 1}{x-1}$ chia hết cho $x^{\frac{p-1}{2}}+1$.

Và $P_{2p}(x) = 1 + x + \cdots + x^{p-2} + x^{p+2} + \cdots + x^{p-2} = (x^{p+1}+1)(1 + x + \cdots + x^{p-2})$ chia hết cho $x^{p+1}+1$. Phần $a$ được chứng minh.

Cũng từ kết quả từ hai bổ đề trên thì $P_n(x)$ không thể là bất khả quy nếu $n > 4$ có ước chính phương, hay $n > 3$ là số nguyên tố hay $n$ là tích của không ít hơn $2$ số nguyên tố lẻ, Do đó chỉ còn xét $n = 2p$, $n=3$ và $n = 4$. Mà theo trên thì nếu $p > 3$ thì $(1 + x + \cdots + x^{p-2})$ là đa thức khác hằng nên $P_{2p}$ không thể là bất khả quy. Với $p = 3$ thì $P_6(x) = 1 + x^4$ là bất khả quy. Cũng theo trên thì $P_4(x) = 1 + x^2$ và $P_3(x) = 1 + x$ cũng là bất khả quy.

Vậy $n = 3, 4, 6$ là các giá trị thỏa mãn.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Traum is giấc mơ.

thay đổi nội dung bởi: Traum, 02-04-2018 lúc 05:36 PM
Traum is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to Traum For This Useful Post:
DuyLTV (05-04-2018), huynhcongbang (07-04-2018)
 
[page compression: 10.63 k/11.80 k (9.99%)]