Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Đại Học Và Sau Đại Học/College Playground > Đại Số/Algebra

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 17-04-2018, 10:14 AM   #1
zinxinh
Café Noir
 
zinxinh's Avatar
 
Tham gia ngày: Jan 2009
Bài gởi: 195
Thanks: 60
Thanked 67 Times in 43 Posts
Chuyên đề từ bài chọn TST

A)Xét tập $H_{n}=(a_{1}=1<..<a_{k}=n-1)$ tập các số nguyên dương bé hơn n và nguyên tố với n.Gọi i là số nguyên dương sao cho $a_{i+1}-a_{i}$ nhỏ nhất .Với mỗi số nguyên dương m tồn tại $c\in H_{n}$ sao cho $ca_{i}=a_{m},ca_{i+1}=a_{m'}$ nếu thế thì $|a_{i+1}-a_{i}|=|c(a_{m'}-a_{m})|\geq |a_{m'}-a_{m}|\geq min (|a_{m+1}-a_{m}|,|a_{m}-a_{m-1}|)\geq |a_{i+1}-a_{i}|$.Điều này chỉ đúng khi $a_{2}-a_{1}=a_{4}-a_{3}=...=a_{k}-a_{k-1}=a$.Đa thức đề bài dễ dàng có được là $(1+x^{a})Q(x)$ trong đó $Q(x) $ là đa thức với hệ số nguyên
b)Để đa thức đã cho bất khả quy thì $\phi(n)=n(1-\frac{1}{p_{1}})...=2$ suy ra n=3,4,6 thử lại thấy đúng
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: zinxinh, 17-04-2018 lúc 10:46 AM
zinxinh is offline   Trả Lời Với Trích Dẫn
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 09:54 AM.


Powered by: vBulletin Copyright ©2000-2018, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 37.21 k/40.56 k (8.24%)]