Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Việt Nam và IMO > 2014

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 05-01-2014, 05:55 AM   #16
Short_list
+Thành Viên+
 
Tham gia ngày: May 2012
Đến từ: Tp.HCM
Bài gởi: 85
Thanks: 12
Thanked 79 Times in 32 Posts
Trích:
Nguyên văn bởi huynhcongbang View Post
Bài 6. (7 điểm)
Tìm giá trị lớn nhất của biểu thức $$P=\frac{{{x}^{3}}{{y}^{4}}{{z}^{3}}}{({{x}^{4}}+ {{y}^{4}}){{(xy+{{z}^{2}})}^{3}}}+\frac{{{y}^{3}}{ {z}^{4}}{{x}^{3}}}{({{y}^{4}}+{{z}^{4}}){{(yz+{{x} ^{2}})}^{3}}}+\frac{{{z}^{3}}{{x}^{4}}{{y}^{3}}}{( {{z}^{4}}+{{x}^{4}}){{(zx+{{y}^{2}})}^{3}}}$$ với $x,y,z$ là các số thực dương.
Theo bất đẳng thức AM-GM, ta có
\[(xy+z^2)^2\ge 4xy\cdot z^2.\]
\[x^4+y^4 \ge \frac{(x^2+y^2)^2}{2} \ge 2xy\cdot \frac{x^2+y^2}{2}=xy(x^2+y^2).\]

Từ đó, suy ra
\[(x^4+y^4)(xy+z^2)^3 \ge 4xyz^2 \cdot xy(x^2+y^2)\cdot (xy+z^2)\ge 4x^2y^2z^2[2x^2y^2+z^2(x^2+y^2)],\]
hay là
\[\frac{{{x}^{3}}{{y}^{4}}{{z}^{3}}}{({{x}^{4}}+{{y} ^{4}}){{(xy+{{z}^{2}})}^{3}}} \le \frac{xy^2z}{2x^2y^2+z^2(x^2+y^2)}.\]
Đặt $a=xy,\;b=yz,\;c=zx.$ Ta được
\[P \le \frac{1}{4}\left (\frac{ab}{2a^2+b^2+c^2}+\frac{bc}{2b^2+c^2+a^2} + \frac{ca}{2c^2+a^2+b^2} \right ).\]
Theo bất đẳng thức AM-GM, thì
\[\frac{ab}{2a^2+b^2+c^2} \le \frac{ab}{\sqrt{2a^2(b^2+c^2)}}=\frac{1}{\sqrt{2}} \cdot \sqrt{\frac{b^2}{b^2+c^2}}.\]
Nên
\[P\le \frac{1}{4\sqrt{2}}\left ( \sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{b^2+c^ 2}}+\sqrt{\frac{c^2}{c^2+a^2}} \right ).\]
Mặc khác, ta có một kết quả quen thuộc
\[\sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{b^2+c^ 2}}+\sqrt{\frac{c^2}{c^2+a^2}} \le \frac{3}{\sqrt{2}}.\]
Nên $P \le \dfrac{3}{16}.$ Ngoài ra nếu $a=b=c$ hay $x=y=z,$ thì đẳng thức xảy ra. Điều này cho phép ta kết luận $P_{\max}=\dfrac{3}{16}.$

Nhận xét 1: Ngoài ra chúng ta có thể chứng minh
\[\frac{ab}{2a^2+b^2+c^2}+\frac{bc}{2b^2+c^2+a^2} + \frac{ca}{2c^2+a^2+b^2} \le \frac{3}{4},\]
bằng cách đưa bài toán về chứng minh về dạng đối xứng mạnh hơn là
\[\frac{ab}{a^2+b^2+2c^2}+\frac{bc}{b^2+c^2+2a^2} + \frac{ca}{2c^2+a^2+2b^2} \le \frac{3}{4},\]
rồi sử dụng bất đẳng thức Cauchy-Schwarz dạng cộng mẫu.

Ở đây mình có thêm một lời giải bằng khác. Sử dụng phân tích
$$\frac{2ab}{2a^2+b^2+c^2} =1-\frac{(a-b)^2+a^2+c^2}{2a^2+b^2+c^2},$$
ta viết bất đẳng thức trên lại như sau
\[ \sum \frac{(a-b)^2}{2a^2+b^2+c^2} +\sum \frac{a^2}{2a^2+b^2+c^2}+\sum \frac{c^2}{2a^2+b^2+c^2} \ge \frac{3}{2}.\]
Không mất tính tổng quát của bài toán, ta giả sử $b$ là số ở giữa $a$ và $c.$ Khi đó theo bất đẳng thức Cauchy-Schwarz inequality, ta có
\[\sum \frac{(a-b)^2}{2a^2+b^2+c^2} \ge \frac{\left[ (a-b)+(b-c)+(a-c)\right]^2}{(2a^2+b^2+c^2)+(2b^2+c^2+a^2)+(2c^2+a^2+b^2)}, \] \[\sum \frac{a^2}{2a^2+b^2+c^2} \ge \frac{(a+b+c)^2}{(2a^2+b^2+c^2)+(2b^2+c^2+a^2)+(2c ^2+a^2+b^2)}, \]

\[ \sum \frac{c^2}{2a^2+b^2+c^2} \ge \frac{(c+a+b)^2}{(2a^2+b^2+c^2)+(2b^2+c^2+a^2)+(2c ^2+a^2+b^2)}.\]
Như vậy, ta cần chứng minh được
\[\frac{4(a-c)^2+2(a+b+c)^2}{4(a^2+b^2+c^2)} \ge \frac{3}{2},\]
tương đương với.
$$(a-b)(b-c) \ge 0.$$
Bất đẳng thức cuối cùng đúng theo giả thiết của $b.$ Nên ta có điều phải chứng minh.

Nhận xét 2: Mình sẽ bàn một tí về xuất sứ của bài toán này (theo mình dự đoán) và những bài toán có hình thức "xấu xí" như vậy đã từng xuất hiện trước đó của kỳ thi. Thực sự thì đây là một bài toán quá dở của ngày thi thứ 2 nói riêng và của cả kỳ thi nói chung. Một bài toán cho đủ đội hình, mang tính đánh đố hơn là một bài toán của kỳ thi HSG quốc gia vì từ một bài toán rất đẹp, tác giả đã tìm cách biến đổi và sử dụng các đánh giá của mình để có được bài toán cồng kềnh như vậy. Sự xất hiện của quá nhiều $x,\;y,\;z$ làm bài toán trông không được đẹp đồng thời lũy thừa của biến quá cao làm nhiều bạn học sinh bị hoảng, vì thực tế thấy rằng các bạn học sinh thường tỏ ra bối khi đối với diện những bài toán có lũy thừa lớn hoặc bậc quá của bất đẳng thức quá lớn.

Ý tưởng giải bài toán quá rõ ràng, tử số có dạng tích còn mẫu số lại là tổng của các tích thì việc sử dụng bất đẳng thức AM-GM đã hiện ra ngay đó. Lại nói về việc ý tưởng của bài toán lỗ rõ ra trong bài, mình xin đề ra đây bài toán của kỳ thi TST năm 2010, một bài toán với ý tưởng tương tự

Bài toán 1 (Việt Nam TST 2010): Cho ba số dương $a,\;b,\;c$ thỏa mãn $16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$ Chứng minh rằng
\[\sum_{cyc} \left( \frac{1}{a+b+\sqrt{2a+2c}}\right)^{3}\leq \frac{8}{9}.\]

Còn về bài toán số 6 của kỳ thi, mình đoán rằng tác giả bài toán đã đi từ bất đẳng thức sau của anh Trần Quốc Anh rồi chế biến lại thành bài toán số 6 này

Bài toán 2 (Trần Quốc Anh): Cho $a,\;b,\;c$ là ba số thực dương thỏa mãn $abc=1.$ Chứng minh rằng
\[\displaystyle \frac{1}{(a+1)^2(b+c)}+\frac{1}{(b+1)^2(c+a)} + \frac{1}{(c+1)^2(a+b)} \le \frac{3}{8}.\]
Bất đẳng thức này có hình thức rất đẹp, tuy nhiên nếu ta viết nó lại dưới dạng thuần nhất thì nó trông rất xấu xí, như sau
\[\sum \frac{xy^3z^3}{(x^2+yz)^2(y^3+z^3)} \le \frac{3}{8}.\]
Rõ ràng thì hai bài toán quá giống nhau, và cả hai đều có thể quy về chứng minh bất đẳng thức mạnh hơn
\[\sum \sqrt{\frac{a}{a+b}} \le \frac{3}{\sqrt{2}},\]
là một bất đẳng thức quen thuộc từng là bài thi của Trung Quốc năm 2005 và đề thi Olympic 30/4 năm (năm 2009 hay 2010 mình không nhớ rõ).

Việc những bài toán như vầy xuât hiện càng nhiều trong đề thi cho chúng ta thấy sự thiếu ý tưởng từ khâu ra đề. Việc này cần được khắc phục nhanh chóng để trả lại những bài toán hay, đẹp lại cho đề thi.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: Short_list, 05-01-2014 lúc 04:48 PM
Short_list is offline   Trả Lời Với Trích Dẫn
The Following 8 Users Say Thank You to Short_list For This Useful Post:
hakudoshi (05-01-2014), hoangqnvip (06-01-2014), huynhcongbang (05-01-2014), kien10a1 (05-01-2014), Lil.Tee (05-01-2014), mathandyou (05-01-2014), perfectstrong (05-01-2014), tangchauphong (11-01-2014)
Old 05-01-2014, 09:22 AM   #17
thaygiaocht
+Thành Viên+
 
thaygiaocht's Avatar
 
Tham gia ngày: Aug 2012
Đến từ: Chuyên Hà Tĩnh
Bài gởi: 165
Thanks: 793
Thanked 216 Times in 93 Posts
Trích:
Nguyên văn bởi Short_list View Post
Bài toán 2 (Trần Quốc Anh): Cho $a,\;b,\;c$ là ba số thực dương thỏa mãn $abc=1.$ Chứng minh rằng
\[\displaystyle \frac{1}{(a+1)^2(b+c)}+\frac{1}{(b+1)^2(c+a)} + \frac{1}{(c+1)^2(a+b)} \le \frac{3}{8}.\]
Bất đẳng thức này có hình thức rất đẹp, tuy nhiên nếu ta viết nó lại dưới dạng thuần nhất thì nó trông rất xấu xí, như sau
\[\sum \frac{xy^3z^3}{(x^2+yz)^2(y^3+z^3)} \le \frac{3}{8}.\]
Rõ ràng thì hai bài toán quá giống nhau, và cả hai đều có thể quy về chứng minh bất đẳng thức mạnh hơn
\[\sum \sqrt{\frac{a}{a+b}} \le \frac{3}{\sqrt{2}},\]
là một bất đẳng thức quen thuộc.
Mình cũng đoán đây chính là nguồn gốc của bài này.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
https://www.facebook.com/thaygiaocht
thaygiaocht is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to thaygiaocht For This Useful Post:
vutuanhien (05-01-2014)
Old 05-01-2014, 12:30 PM   #18
ntuan5
+Thành Viên+
 
ntuan5's Avatar
 
Tham gia ngày: Dec 2011
Bài gởi: 155
Thanks: 130
Thanked 38 Times in 24 Posts
Ở chỗ đánh giá $\frac{x^3}{x^8+1} \le \frac{3(x^2+1)}{4(x^4+x^2+1)}$ làm sao tìm được số $\dfrac{3}{4}$ và bậc của tử, mẫu ($2$) vậy ạ?
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
ntuan5 is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to ntuan5 For This Useful Post:
thaygiaocht (05-01-2014)
Old 05-01-2014, 01:20 PM   #19
thaygiaocht
+Thành Viên+
 
thaygiaocht's Avatar
 
Tham gia ngày: Aug 2012
Đến từ: Chuyên Hà Tĩnh
Bài gởi: 165
Thanks: 793
Thanked 216 Times in 93 Posts
Trích:
Nguyên văn bởi ntuan5 View Post
Ở chỗ đánh giá $\frac{x^3}{x^8+1} \le \frac{3(x^2+1)}{4(x^4+x^2+1)}$ làm sao tìm được số $\dfrac{3}{4}$ và bậc của tử, mẫu ($2$) vậy ạ?
Có $\dfrac{3}{4} $ để khi $x=1 $ thì có đẳng thức, còn bậc của tử thì dùng đạo hàm.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
https://www.facebook.com/thaygiaocht
thaygiaocht is offline   Trả Lời Với Trích Dẫn
Old 05-01-2014, 09:38 PM   #20
ntuan5
+Thành Viên+
 
ntuan5's Avatar
 
Tham gia ngày: Dec 2011
Bài gởi: 155
Thanks: 130
Thanked 38 Times in 24 Posts
Trích:
Nguyên văn bởi thaygiaocht View Post
Có $\dfrac{3}{4} $ để khi $x=1 $ thì có đẳng thức, còn bậc của tử thì dùng đạo hàm.
Vâng, nhưng tại sao lại xét dạng: $\frac{x^k+1}{x^{2k}+x^{k}+1}$ hay $\frac{1}{2}+klnx$, có phải là chỉ để đưa về bđt đã biết?
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
ntuan5 is offline   Trả Lời Với Trích Dẫn
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 03:22 PM.


Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 62.94 k/69.66 k (9.64%)]