Ðề tài: Topic thử LaTeX
Xem bài viết đơn
Old 21-10-2014, 09:15 PM   #96
Conanvn
+Thành Viên+
 
Conanvn's Avatar
 
Tham gia ngày: Jul 2012
Đến từ: THPT Chuyên Thoại Ngọc Hầu, AG
Bài gởi: 188
Thanks: 190
Thanked 80 Times in 55 Posts

1/ Ta có $$\dfrac{-n}{n^2+1} \le \dfrac{n\sin n}{n^2+1} \le \dfrac{n}{n^2+1} forall n $$
Mà $$\lim_{n \to +\infty}{\dfrac{-n}{n^2+1} }=\lim_{n \to +\infty}{\dfrac{n}{n^2+1}}= 0$$
Theo nguyên lý kẹp : $\lim {u_n}=0$

2/ Ta có giới hạn cơ bản: $$\lim_{x \to 0} {(1+x)^\dfrac{1}{x}}=e $$
Trở lại bài toán: $$\lim_{x \to 0}{ \left( 1+(cosx-1) \right)^{\dfrac{1}{cos x -1}. \dfrac{cos x -1}{x^2}}}=\lim_{x \to 0}{ \left( 1+(cosx-1) \right)^{\dfrac{1}{cos x -1}. \dfrac{-2sin^2\dfrac{x}{2}}{x^2}}}$$
Ta có giới hạn cơ bản: $$\lim_{x \to 0}{\dfrac{sin x}{x}}=1$$
Nên $$\lim_{x \to 0}{\dfrac{-2sin^2\dfrac{x}{2}}{x^2}}=\lim_{x \to 0}{\dfrac{-1}{2} \left(\dfrac{ \sin{\dfrac{x}{2}}}{\dfrac{x}{2}} \right) ^2} =\dfrac{-1}{2} $$
Vậy $$ \lim u_n =e ^\dfrac{-1}{2} =\dfrac{1}{\sqrt{e}}$$
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Chuyến tàu đã dừng lại.
Conanvn is offline   Trả Lời Với Trích Dẫn
 
[page compression: 8.27 k/9.30 k (11.15%)]