![]() | ![]() | | ![]() |
|
|
![]() |
Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé ! * Quy định về việc viết bài trong diễn đàn MathScope * Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây |
![]() ![]() |
|
![]() | #1 |
Moderator ![]() : Aug 2018 : 3 : 0 | Äá» chá»n đội tuyển chuyên sư phạm Hà Ná»™i 2018-2019 1. Cho $n$ là số nguyên lá»›n hÆ¡n $1$ và $\left\{x_1,\,x_2,\,\ldots,\,x_n\right\}$ là má»™t hoán vị cá»§a $\left\{1,\,2,\,\ldots,\,n\right\}$, (táºp hợp gồm $n$ số nguyên dương đầu tiên). Chứng minh rằng$$\sum\limits_{k = 1}^n {k{x_k}\left( {k + {x_k}} \right)} \le \frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{2}.$$ 2. Cho các số nguyên $m,\,n$ lá»›n hÆ¡n $1$ thá»a mãn trong $n$ số $x^2-x$ vá»›i $x=1,\,2,\,\ldots n$ không có hai số nà o cùng số dư khi chia $m$. Chứng minh rằng:
3. Vá»›i má»—i số nguyên $n>1$ ta gá»i má»™t hoán vị $\left\{a_1,\,a_2,\,\ldots,\,a_n\right\}$ cá»§a $\left\{1,\,2,\,\ldots,\,n\right\}$,(táºp hợp gồm $n$ số nguyên dương đầu tiên) là tốt nếu \[\left| {{a_1} - 1} \right| = \left| {{a_2} - 2} \right| = \ldots = \left| {{a_n} - n} \right| \ne 0.\] Chứng minh rằng
4. Cho tam giác $ABC$ nhá»n, không cân, ná»™i tiếp đưá»ng tròn $(O)$ $P,\,Q$ theo thứ tá»± là tâm đưá»ng tròn ngoại tiếp các tam giác $OAB,\,OAC$. $R$ là điểm đối xứng cá»§a $O$ qua $BC$. Gá»i $X$ là giao Ä‘iểm cá»§a $RP$ và $CP$, $Y$ là giao Ä‘iểm cá»§a $RC$ và $BQ$. Chứng minh rằng $\widehat{BAX} = \widehat{YAC}$. 5. Cho tam thức báºc hai $f(x)=x^2+ax+b$, vá»›i $a,\,b\in\mathbb{R}$. Biết rằng tồn tại duy nhất số thá»±c $x_0$ sao cho $f(f(x_0))=0$. Chúng minh rằng $a,\,b$ là các số không âm. 6. Cho ba số dương $a_1,\,b_1,\,c_1$ thá»a mãn $a_1+b_1+c_1=1$ và các dãy số $\left( {{a_n}} \right),{\mkern 1mu} \left( {{b_n}} \right),{\mkern 1mu} \left( {{c_n}} \right)$, thá»a mãn \[{a_{n + 1}} = {a_n}^2 + 2{b_n}{c_n},\,\quad\quad {b_{n + 1}} = {b_n}^2 + 2{a_n}{c_n},\,\quad\quad {c_{n + 1}} = {c_n}^2 + 2{a_n}{c_n},\;\ \forall n\in\mathbb{N^*}.\] Xét dãy $x_n$ xác định bởi \[{x_n} = {a_n}^2 + {b_n}^2 + {c_n}^2, \forall n\in\mathbb{N^*}.\] Chứng minh
8. Cho tam giác $ABC$ không cân ná»™i tiếp đưá»ng tròn $O$, $I$ là tâm đưá»ng tròn ná»™i tiếp. Gá»i $E$ là giao Ä‘iểm cá»§a $BI$ và $AC$, $F$ là giao Ä‘iểm cá»§a $CI$ và $AB$; $M,\,N$ lần lượt là giao Ä‘iểm thứ hai cá»§a $BI$ và $CI$ và đưá»ng tròn $O$. ÄÆ°á»ng thẳng $BI$ cắt đưá»ng tròn ngoại tiếp tam giác $BNF$ tại Ä‘iểm thứ hai $P$, đưá»ng thẳng $CI$ cắt đưá»ng tròn ngoại tiếp tam giác $CME$ tại Ä‘iểm thứ hai $Q$.
|
![]() | ![]() |