Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope

  Diễn Đàn MathScope > Sơ Cấp > Giải Tích

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


 
30-12-2023, 01:50 PM   #1
Thụy An
+Thành Viên+

 
: Oct 2017
: 93
: 1
Tập con của C[0;1]

Cho $S$ là một tập hợp mà mỗi phần tử của $S$ là một hàm liên tục trên $[0;\,1]$. Biết rằng cứ với $f,\, g$ thuộc $S$ thì $f+g$ và $fg$ cũng thuộc $S$, đồng thời cứ với mỗi $a$ thuộc $[0;\,1]$ lại có $f_a\in S$ để $f_a(a)\ne 0$. Chứng mình rằng tồn tại $f\in S$ thỏa mãn $f(x)>0$ với mọi $x$ thuộc $[0;\,1]$.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 
31-12-2023, 04:48 PM   #2
nmd2708
Super Moderator
 
: Oct 2018
: 11
: 2
Lâu lắm mới quay lại diễn đàn thầy ạ.

Chứng minh: Nhắc lại rằng với mỗi $a\in [0,1]$, $f_a$ là hàm liên tục thuộc $S$ thỏa mãn $f_a(a)\ne 0$. Do $f$ liên tục nên
$$U_a:=\{x\in [0,1]| f_a(x)\ne 0\}$$
khác rỗng (chứa $a$) và mở trong $[0,1]$. Do đó ta có $\displaystyle \cup_{a\in [0,1]}U_a=[0,1]$.

Giờ ta sử dụng tính compact của đoạn $[0,1]$, từ phủ mở trên ta có một phủ mở hữu hạn
$$[0,1]=\bigcup_{1\le i\le n}U_{a_i}$$
với $a_i\in [0,1]$, $1\le i\le n$. Từ đó ta xét
$$f=f_{a_1}^2+f_{a_2}^2+\ldots+f_{a_n}^2.$$
Do $f_{a_i}\in S$ nên $f_{a_i}^2\in S$ với mọi $1\le i\le n$. Từ đó $f\in S$ và $f$ là hàm cần tìm vì $f(x)\ge 0$ với mọi $x\in [0,1]$ và
$$\{x\in [0,1]:f(x)=0\}=\{x\in [0,1]:f_{a_i}(x)=0 \forall 1\le i\le n\}=\bigcap_{1\le i\le n}U_{a_i}^c=\varnothing.$$
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 


« | »







- -

Inactive Reminders By mathscope.org
[page compression: 38.14 k/41.75 k (8.66%)]