![]() | ![]() | | ![]() |
|
|
![]() |
Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé ! * Quy định về việc viết bài trong diễn đàn MathScope * Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây |
![]() ![]() |
|
![]() | #1 |
+Thà nh Viên+ ![]() : Jan 2016 : 15 : 0 | Biến đổi bá»™ số thá»±c Vá»›i má»—i bá»™ số thá»±c $\left( {{x_1};\,{x_2};\, \ldots ;\,{x_n}} \right)$, ta xét phép biến đổi "mịn" là phép biến đổi đưa bá»™ $\left( {{x_1};\,{x_2};\, \ldots ;\,{x_n}} \right)$ đó thà nh bá»™ $\left( {\dfrac{{{x_1} + {x_2}}}{2};\,\dfrac{{{x_2} + {x_3}}}{2};\, \ldots ;\,\dfrac{{{x_{n - 1}} + {x_n}}}{2};\,\dfrac{{{x_n} + {x_1}}}{2}} \right)$. Cho trước má»™t bá»™ số thá»±c $\left( {{a_1};\,{a_2};\, \ldots ;\,{a_n}} \right)$, chứng minh rằng sau má»™t hữu hạn lần thá»±c hiện phép biến đổi "mịn" ta sẽ có được má»™t bá»™ $\left( {{A_1};\,{A_2};\, \ldots ;\,{A_n}} \right)$ thá»a\[\left| {{A_i} - {A_j}} \right| < \frac{1}{{{2^{2015}}}}\;\forall \,1 \le i < j \le n\] |
![]() | ![]() |
![]() | #2 | |
Administrator ![]() ![]() : Jun 2012 : 157 : 2 | :
$$S_k=a_1^2+a_2^2+....+a_n^2,$$ Thì $$S_{k+1}=(\frac{a_1+a_2}{2})^2+(\frac{a_2+a_3}{2} )^2+...+(\frac{a_1+a_n}{2})^2.$$ Từ đây ta dá»… dà ng có $$S_k-S_{k+1}=\frac{1}{4}[(a_1-a_2)^2+(a_2-a_3)^2+...+(a_n-a_1)^2].$$ Hay $(S_n)_n$ là má»™t dãy số không tăng, ngoà i ra nó cÅ©ng bị chặn nên há»™i tụ. Tức là vá»›i má»i $k\in\mathbb{N}^*$ luôn tồn tại $m\in\mathbb{N}^*$ sao cho $S_m-S_{m+1}\leq\dfrac{1}{2^k}$. Giả sá» bá»™ số sau $m$ bước biến đổi là $(A_1,A_2,...,A_n)$. Khi đó ta có $$\frac{1}{4}[(A_1-A_2)^2+(A_2-A_3)^2+...+(A_n-A_1)^2]\leq\frac{1}{2^k}.$$ Hay $$(A_i-A_{i+1})^2\leq\frac{1}{2^{k-2}},\forall i.$$ Chá»n $k=4034$ thì ta có Ä‘iá»u phải chứng minh. | |
![]() | ![]() |