|
|
|
Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé ! * Quy định về việc viết bài trong diễn đàn MathScope * Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây |
|
15-02-2019, 08:00 AM | #1 |
+Thà nh Viên+ : Jan 2009 : 214 : 65 | British Mathemmatical Olimpiad Round 2 Bà i 3:Tìm tất cả các hà m f(x) không giảm từ $R^{+}->R^{+}$ sao cho $f(1)+f(x)+f(x^{2})+f(x^{4})=1+x+x^{2}+x^{4}$ vá»›i má»i x>0 Giải: 1)Cho x=1 thì f(1)=1 2)Từ tÃnh không giảm hà m số f(x) nên $f(x)-f(y),f(x^{2})-f(y^{2}),f(x^{4})-f(y^{4}),x-y$ cùng dấu nên từ Ä‘iá»u kiện ta có $|x^{4}-y^{4}|+|x^{2}-y^{2}|+|x-y|=|f(x^{4})-f(y^{4}|+|f(x^{2})-f(y^{2}|+|f(x)-f(y)|\geq |f(x)-f(y)|\geq 0$ Khi cho y tiến gần tá»›i x,thì cả vế trái và vế phải dần vá» 0.Hay là $\lim|f(x)-f(y)| $ dần vá» 0 khi y dần vá» x.Kết lại f(x) là hà m liên tục 3)Ta có $f(x)+f(x^{2})+f(x^{4})=x+x^{2}+x^{4}$ Thay x là $x^{2}$ thì $f(x^{8})+f(x^{2})+f(x^{4})=x^{8}+x^{2}+x^{4}$.Do đó $f(x^{8})-x^{8}=f(x)-x$=>$f(x)-x=f(x^{\frac{1}{8}})-x^{\frac{1}{8}}=f(x^{\frac{1}{8^{n}}})-x^{\frac{1}{8^{n}}}$ chuyển qua giá»›i hạn khi n tá»›i dÆ°Æ¡ng vô cùng thì giá»›i hạn nà y vá» 0 hay f(x)=x : Tá»± Ä‘á»™ng gá»™p bà i |