Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope

  Diễn Đàn MathScope > Đại Học Và Sau Đại Học/College Playground > Giải Tích/Analysis

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


 
15-02-2019, 08:00 AM   #1
zinxinh
+Thành Viên+
 
 
: Jan 2009
: 214
: 65
British Mathemmatical Olimpiad Round 2

Bài 3:Tìm tất cả các hàm f(x) không giảm từ $R^{+}->R^{+}$ sao cho $f(1)+f(x)+f(x^{2})+f(x^{4})=1+x+x^{2}+x^{4}$ với mọi x>0
Giải:
1)Cho x=1 thì f(1)=1
2)Từ tính không giảm hàm số f(x) nên $f(x)-f(y),f(x^{2})-f(y^{2}),f(x^{4})-f(y^{4}),x-y$ cùng dấu nên từ điều kiện ta có $|x^{4}-y^{4}|+|x^{2}-y^{2}|+|x-y|=|f(x^{4})-f(y^{4}|+|f(x^{2})-f(y^{2}|+|f(x)-f(y)|\geq |f(x)-f(y)|\geq 0$ Khi cho y tiến gần tới x,thì cả vế trái và vế phải dần về 0.Hay là $\lim|f(x)-f(y)| $ dần về 0 khi y dần về x.Kết lại f(x) là hàm liên tục
3)Ta có $f(x)+f(x^{2})+f(x^{4})=x+x^{2}+x^{4}$
Thay x là $x^{2}$ thì $f(x^{8})+f(x^{2})+f(x^{4})=x^{8}+x^{2}+x^{4}$.Do đó $f(x^{8})-x^{8}=f(x)-x$=>$f(x)-x=f(x^{\frac{1}{8}})-x^{\frac{1}{8}}=f(x^{\frac{1}{8^{n}}})-x^{\frac{1}{8^{n}}}$ chuyển qua giới hạn khi n tới dương vô cùng thì giới hạn này về 0 hay f(x)=x
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

: Tự động gộp bài
 


« | »







- -

Inactive Reminders By mathscope.org
[page compression: 35.21 k/38.14 k (7.66%)]