Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Đại Học Và Sau Đại Học/College Playground > Giải Tích/Analysis

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 23-05-2020, 05:23 PM   #1
portgas_d_ace
Super Moderator
 
Tham gia ngày: Jul 2012
Đến từ: HCMUS
Bài gởi: 506
Thanks: 160
Thanked 189 Times in 160 Posts
Gửi tin nhắn qua Yahoo chát tới portgas_d_ace
Bổ đề Cantor

Bổ đề Cantor phát biểu rằng một không gian mêtric là đầy đủ khi và chỉ khi mọi dãy giảm các tập con đóng, khác rỗng và đường kính tiến về zero thì có giao khác rỗng.

Câu hỏi đặt ra là nếu thay giả thiết đường kính tiến về zero bởi dãy các đường kính bị chặn thì kết quả sẽ không đúng? Mình định tìm ra phản ví dụ mà nghĩ hoài chưa ra.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
- Đừng cố gắng trở thành một con người thành công, mà hãy trở thành một con người có giá trị -
portgas_d_ace is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to portgas_d_ace For This Useful Post:
quangtu123 (25-07-2020)
Old 25-07-2020, 09:33 AM   #2
quangtu123
+Thành Viên+
 
Tham gia ngày: May 2014
Bài gởi: 11
Thanks: 3
Thanked 5 Times in 5 Posts
Giả sử không gian metric $X$ thỏa mãn mọi dãy giảm các tập con đóng, khác rỗng với đường kính bị chặn đều có giáo không rỗng. Thế thì nói riêng, khẳng định này cũng đúng với các dãy giảm có đường kính tiến về $0$. Theo bổ đề Cantor, $X$ là không gian đầy đủ. Tuy nhiên điều ngược lại quả nhiên là không đúng.

Bạn muốn tìm một không gian đầy đủ $X$ cùng với một dãy $U_i$ các tập con đóng, khác rỗng với đường kính bị chặn sao cho $\cap U_i=\emptyset$. Theo [Only registered and activated users can see links. ], $U_i$ sẽ phải là các tập không compact. Đóng và bị chặn mà không compact, chắc có thể tìm một phản ví dụ trong các không gian Hilbert.

Thật vậy, đặt $U_i=\ell^2\cap\{\Vert x\Vert=1\}\cap \{x_1=\dots=x_i=0\}$. Thế thì $U_i$ là một dãy giảm các tập con đóng, khác rỗng, bị chặn với giao bằng rỗng.

(Bổ đề: $U_i$ là một tập cong đóng.
Chứng minh: $\{\Vert x\Vert=1\}$ là hình cầu đóng. $\{x_1=\dots=x_i=0\}\subset\mathrm{Span}(e_1,\dots ,e_i)^\perp$. Ngược lại, nếu $v\in\mathrm{Span}(e_1,\dots,e_i)^\perp$, $\langle v,e_i\rangle=0\implies x_i(v)=0$. Do đó $\{x_1=\dots=x_i=0\}=\mathrm{Span}(e_1,\dots,e_i)^ \perp$, là phần bù vuông góc của một không gian con, nên là đóng. $U_i$ là giao của hai tập đóng, nên cũng đóng.)
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
quangtu123 is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to quangtu123 For This Useful Post:
portgas_d_ace (29-07-2020)
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 06:17 AM.


Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 42.18 k/45.95 k (8.22%)]