|
|
|
Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé ! * Quy định về việc viết bài trong diễn đàn MathScope * Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây |
|
13-06-2017, 01:11 AM | #1 |
+Thà nh Viên+ : Jun 2017 : 1 : 0 | Giả đáp bà i táºp Phép tÃnh vi phân trên không gian hữu hạn chiá»u Má»i ngÆ°á»i giúp mình mấy bà i nà y vá»›i. Bà i 1. Viết khai triển Taylor đến báºc k trong lân cáºn của (0,0) và tÃnh đạo hà m báºc 3, $f^{(3)}(0,0)(x,y)^3$ a. $f(x,y)=\left ( x\sin\left ( x^2-xy \right ),e^{xy^2} \right )$ b. $ f(x,y)=\left ( y\cos x^2,\sin xy,xe^{xy)} \right )$ Bà i 2. Cho $f:{{\mathbb{R}}^{n}}\to \mathbb{R}$, $f\in {{C}^{k+1}}\left( {{\mathbb{R}}^{n}} \right)$. Giả sá» tồn tại hằng số M sao cho vá»›i má»i $x\in {{\mathbb{R}}^{n}}$, $\left| f\left( x \right) \right|\le M\left\| x \right\|_{2}^{k+1}$ Chứng minh rằng $1\le r\le k$ đạo hà m báºc r, ${{f}^{\left( r \right)}}\left( {{0}_{{{\mathbb{R}}^{n}}}} \right)={{0}_{{{L}^{r}}\left( {{\mathbb{R}}^{n}},\mathbb{R} \right)}}$. Bà i 3. Cho $f:{{\mathbb{R}}^{n}}\to {{\mathbb{R}}^{p}}$, $f\in {{C}^{k+1}}\left( {{\mathbb{R}}^{n}} \right)$. Giả sá» tồn tại hằng số M sao cho vá»›i má»i $x\in {{\mathbb{R}}^{n}}$, ${{\left\| f\left( x \right) \right\|}_{2}}\le M\left\| x \right\|_{2}^{k+1}$ Chứng minh rằng $1\le r\le k$ đạo hà m báºc r, ${{f}^{\left( r \right)}}\left( {{0}_{{{\mathbb{R}}^{n}}}} \right)={{0}_{{{L}^{r}}\left( {{\mathbb{R}}^{n}},{{\mathbb{R}}^{p}} \right)}}$. |