![]() | ![]() | | ![]() |
|
|
![]() |
Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé ! * Quy định về việc viết bài trong diễn đàn MathScope * Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây |
![]() ![]() |
| Ðiều Chỉnh | Xếp Bài |
![]() | #16 |
+Thành Viên+ ![]() Tham gia ngày: Mar 2010 Bài gởi: 86 Thanks: 44 Thanked 70 Times in 34 Posts | Xoá bài. Ko rõ đề. thay đổi nội dung bởi: vinhhop.qt, 26-03-2016 lúc 09:35 PM Lý do: Chắc nhầm rồi. Ai có bản chính của đề xem lại thử coi |
![]() | ![]() |
The Following User Says Thank You to vinhhop.qt For This Useful Post: | daudauvjem (27-03-2016) |
![]() | #17 |
+Thành Viên+ ![]() Tham gia ngày: Feb 2012 Đến từ: PTNK TPHCM Bài gởi: 180 Thanks: 487 Thanked 106 Times in 67 Posts | I think I can solve 3b with inversion, I will post the solution later. I think this is the hardest geometry problem in VNTST history. Problem 5 is very nice, for 5b we only need to consider the case $n=k$ thanks to the results from 5a. __________________ Believe in yourself $\Leftrightarrow$ Believe in miracles |
![]() | ![]() |
![]() | #18 |
+Thành Viên+ ![]() Tham gia ngày: Oct 2010 Đến từ: THPT Chuyên Vĩnh Phúc Bài gởi: 280 Thanks: 29 Thanked 361 Times in 123 Posts | Bài 6. Cho các số thực phân biệt $\alpha_1,\alpha_2,...,\alpha_{16}$. Với mỗi đa thức hệ số thực $P(x)$; đặt $V(P)=P(\alpha_1)+P(\alpha_2)+...+P(\alpha_{16}).$ Chứng minh rằng tồn tại duy nhất đa thức $Q(x)$ bậc 8 có hệ số $x^8$ bằng $1$ thỏa mãn i) $V(QP)=0$ với mọi đa thức $P$ có bậc bé hơn $8.$ ii) $Q(x)$ có $8$ nghiệm thực (tính cả bội).[/QUOTE] Sự tồn tại có lẽ rất khó khăn, tuy nhiên chứng minh sự duy nhất của đa thức Q(x) lại khá đơn giản (Cái này chắc chỉ được 1 điểm ![]() Chú ý là theo định nghĩa của V(P) ta có: V(P1-P2)=V(P1)-V(P2) Giả sử tồn tại hai đa thức Q1, Q2 thỏa mãn. Đặt H(x)=Q1(x)-Q2(x). Theo (i) ta có V((Q1-Q2).P)=V(Q1.P)-V(Q2.P)=0 (*), nên H(x) cũng thỏa mãn. Chú ý rằng bậc của H(x) nhỏ hơn 8. Trong (*) chọn P(x)=H(x) ta được: V(H(x).H(x))=0, suy ra H(x)=0, tức là Q1(x)=Q2(x) (đpcm). |
![]() | ![]() |
![]() | #19 |
Moderator ![]() Tham gia ngày: Aug 2009 Đến từ: Hà Nội Bài gởi: 277 Thanks: 69 Thanked 323 Times in 145 Posts | Từ hướng giải rất hay của Quang, có thể mở rộng 3b theo hướng khác như sau. Cho tam giác $ABC$ nội tiếp $(O)$. $P$ là một điểm bất kì trên phân giác. $BP, CP$ cắt $AC,AB$ tại $E,F$, cắt $ (O)$ tại $Y,Z$ và cắt $(APC), (APB)$ lần lượt tại $T,R$. Gọi $Q$ là điểm liên hợp đẳng giác của $P$ trong tam giác $ABC$. $(BQC)$ cắt $PC,PB$ tại $Z',Y'$. Khi đó tồn tại một điểm $S$ trên $AP$ sao cho $\dfrac{SA}{SP}=\dfrac{RZ}{ZZ'}=\dfrac{TY}{YY'}$ và gọi giao của trung trực $PS$ với $ EF$ là $J$ thì $PJ\perp PO.$ |
![]() | ![]() |
![]() | #20 |
Super Moderator ![]() Tham gia ngày: Apr 2009 Bài gởi: 696 Thanks: 8 Thanked 800 Times in 423 Posts | Tổng hợp thành 1 file ở đây https://www.overleaf.com/read/pskqtmbzhhfr __________________ |
![]() | ![]() |
The Following User Says Thank You to hungchng For This Useful Post: | F.Pipo (31-03-2016) |
![]() | #22 |
Moderator ![]() Tham gia ngày: Nov 2007 Đến từ: cyber world Bài gởi: 413 Thanks: 14 Thanked 466 Times in 171 Posts | Một cách giải cho bài 6 ![]() Phần 1: Chứng minh tồn tại đa thức $Q(x)$ thỏa mãn điều kiện a: Ta sẽ chứng minh rằng với mọi số nguyên dương $k$ thì tồn tại đa thức bậc $Q_k(x)$ bậc $k$ và hệ số bậc cao nhất là 1 sao cho $\sum\limits_{i=1}^{16}\alpha_i^jQ_k(\alpha_i) = 0$ với mọi $0\le j\le k-1$. Với $k=1$ chọn $Q_1(x) = x - \frac{\sum\limits_{i=1}^{16}\alpha_{i}}{16}$, dễ thấy $\sum\limits_{i=1}^{16}Q_1(\alpha_i) = 0$. Với $k = 2$ chọn $Q_2(x) = x^2 + ax + b$ với $a,b$ thỏa mãn hệ phương trình $\sum\limits_{i=1}^{16}\alpha_i^2 + a\sum\limits_{i=1}^{16}\alpha_i + 16b = 0$ và $\sum\limits_{i=1}^{16}\alpha_i^3 + a\sum\limits_{i=1}^{16}\alpha_i^2 + b\sum\limits_{i=1}^{16}\alpha_i = 0$ (dễ thấy là tồn tại $a$ và $b$). Gỉa sử đã có $Q_k(x)$ bậc $k$ và $Q_{k-1}(x)$. Ta xây dựng $Q_{k+1}(x)$ từ chúng. Đặt $Q_{k+1}(x) = (x+a)Q_k(x) + bQ_{k-1}(x)$ với $a$ và $b$ thỏa mãn: $\sum\limits_{i=1}^{16}\alpha_i^{k}Q_{k}(\alpha_i) + b\sum\limits_{i=1}^{16}\alpha_i^{k-1}Q_{k}(\alpha_i) = 0$ và $\sum\limits_{i=1}^{16}(\alpha_i^{k+1} + a\alpha_i^{k})Q_{k}(\alpha_i) + b\sum\limits_{i=1}^{16}\alpha_i^{k}Q_{k}(\alpha_i) = 0$ (Dễ thấy là $b$ xác định được trước, rồi xác định $a$). Bây giờ ta chứng minh rằng $\sum\limits_{i=1}^{16}\alpha_i^{j}Q_{k+1}(\alpha_ j) = 0$ với mọi $0\le j\le k$. Thật vậyvới $0\le j\le k-2$: $\sum\limits_{i=1}^{16}\alpha_i^{j}Q_{k+1}(\alpha_ i) = \sum\limits_{i=1}^{16}(\alpha_i^{j+1} + a\alpha_{i}^{j})Q_{k}(\alpha_i) + b\sum\limits_{i=1}^{16}\alpha_i^{j}Q_{k-1}(\alpha_i) = 0$. Với $j = k-1$ thì phải có $\sum\limits_{i=1}^{16}\alpha_i^{k}Q_{k}(\alpha_i) + b\sum\limits_{i=1}^{16}\alpha_i^{k-1}Q_{k}(\alpha_i) = 0$. Với $j=k$ cũng phải có $\sum\limits_{i=1}^{16}(\alpha_i^{k+1} + a\alpha_i^{k})Q_{k}(\alpha_i) + b\sum\limits_{i=1}^{16}\alpha_i^{k-1}Q_{k}(\alpha_i) = 0$. Vậy theo quy nạp thì sẽ tồn tại $Q(x)$ bậc 8 và có hệ số cao nhất bằng 1 sao cho $\sum\limits_{i=1}^{16}\alpha_i^{j}Q(\alpha_i) = 0$ với mọi $0\le j\le 7$. Hơn nữa mọi đa thức $P(x)$ có bậc nhỏ hơn 8 là tổ hợp tuyến tính của $1,x,..,x^7$ nên có $\sum\limits_{i=1}^{16}P(\alpha_i)Q(\alpha_i) = 0$. ĐPCM. Phần 2: Chứng minh $Q(x)$ có 8 nghiệm và $Q(x)$ là duy nhất. Bổ đề: đa thức $R(x)$ bậc chẵn, có hệ số bậc lớn nhất là 1 và tồn tại $a$ mà $R(a) < 0$ thì $R$ có ít nhất hai nghiệm thực. Với $P(x) = 1$ thì $\sum\limits_{i=1}^{16}Q(\alpha_i) = 0$. Do $Q(x)$ bậc 8 nên không thể xảy ra trường hợp tất cả $Q(\alpha_j)$ đều bằng 0. Do đó tồn tại $i$ sao cho $Q(\alpha_j) < 0$, mà hệ số bậc cao nhất của $Q(x)$ là 1 nên $Q(x)$ có ít nhất hai nghiệm thực là $\beta_1, \beta_2$. Đặt $Q(x) = (x-\beta_1)(x-\beta_2)Q_1(x)$, thì $Q_1$ có bậc chẵn và hệ số bậc cao nhất là 1. Với $P(x) = (x - \beta_1)(x-\beta_2)$, có $\sum\limits_{i=1}^{16}(\alpha_i - \beta_1)(\alpha_i-\beta_2)Q(\alpha_i) = 0$ suy ra $\sum\limits_{i=1}^{16}(\alpha_i - \beta_1)(\alpha_i-\beta_2)(\alpha_i-\beta_1)(\alpha_i-\beta_2)Q_1(\alpha_i) = 0$ hay $\sum\limits_{i=1}^{16}(\alpha_i-\beta_1)^2(\alpha_i-\beta_2)^2Q_1(\alpha_i) = 0$. Do đó, tồn tại $j$ mà $Q_1(\alpha_j) < 0$ và lại theo bổ đề ta có $Q_1$ có ít nhất hai nghiệm là $\beta_3, \beta_4$, hệ qủa là $Q(x)$ có ít nhất bốn nghiệm là $\beta_1,\beta_2,\beta_3$ và $\beta_4$. Cứ áp dụng như trên thì sau $3$ lần ta có $Q(x)$ có ít nhất $8$ nghiệm, mà $Q(x)$ bậc $8$ nên $Q(x)$ có đúng 8 nghiệm. Chứng minh tính duy nhất của $Q$. Gỉa sử tồn tại $Q_1$ và $Q_2$ thỏa mãn. Vì $Q_1$ và $Q_2$ có bậc 8 và hệ số bậc cao nhất bằng 1 nên $H(x) = Q_1(x) - Q_2(x)$ có bậc nhỏ hơn 8. Do đó $\sum\limits_{i=1}^{16}H(\alpha_i)Q_1(\alpha_i) = 0$, và $\sum\limits_{i=1}^{16}H(\alpha_i)Q_2(\alpha_i) = 0$. Suy ra $\sum\limits_{i=1}^{16}H(\alpha_i)\left(Q_1(\alpha _i) -Q_2(\alpha_i)\right) = 0$ hay $\sum\limits_{i=1}^{16}H(\alpha_i)H(\alpha) = 0$. Suy ra $H(\alpha_i) = 0$ với mọi $i =1,...,16$. Điều này chỉ xảy ra nếu $H(x) = 0$ với mọi $x$. ĐPCM. __________________ Traum is giấc mơ. ![]() |
![]() | ![]() |
The Following User Says Thank You to Traum For This Useful Post: | namdung (31-03-2016) |
![]() | #23 |
Moderator ![]() Tham gia ngày: Nov 2007 Đến từ: cyber world Bài gởi: 413 Thanks: 14 Thanked 466 Times in 171 Posts | Bài 2 ![]() Sắp lại các số trong $A$ theo thứ tự tăng dần $a_1 < a_2 <\cdots < a_{2000}$. Với mỗi $1\le k\le 2000$ đặt $x_k$ là số các số $m \in B$ mà $|a_k - m| \le 1000$. Ta sẽ chứng minh: $x_{k} + x_{2001-k} \le \min\{4002, 2016 + 2k\}$ với mọi $1\le k\le 1000$. Trước hết dễ thấy $x_{k}\le 2001$ với mọi $1\le k\le 2000$ nên $x_k + x_{2001-k}\le 4002$. Gọi $X_k$ là tập các số $m\in B$ mà $|a_k-m|\le 1000$. Khi đó $X_k\subset B_k = \{a_k-1000,...,a_k,...,a_{k} + 1000\}$. Tương tự cũng có $X_{2001-k} \subset B_{2001-k} = \{a_{2001-k}-1000,...,a_{2001-k},...,a_{2001-k} + 1000\}$. Do đó: $X_{k}\cap X_{2001-k} \subset B_{k}\cap B_{2001-k}$. Lại có $a_{k} + 2001-2k \le a_{2001-k}$, nên $B_{k}\cap B_{2001-k}\le 2k$. Hệ qủa là $x_k + x_{2001-k} = |A_k| + |B_k| = |A_k\cup B_k| + |A_k\cap B_k| \le 2016 + 2k$ Vậy ta đã chứng minh được $x_k + x_{2001-k}\le \min\{4002, 2016 + 2k\}$ với mọi $1\le k\le 1000$. Do đó $\sum\limits_{k=1}^{1000}x_k \le \sum\limits_{k=1}^{1000} \min\{4002, 2016 + 2k\} = \left(\sum\limits_{k=1}^{993}2016+2k\right) + 7\times 4002 = 3016944$. Với hai tập $A = \{9,...,2008\}, B = \{1,...,2016\}$ thì có số cặp $m,n$ thỏa mãn $|m-n|\le 1000$ chính bằng 3016944. Đó cũng là đáp số của bài toán. __________________ Traum is giấc mơ. ![]() |
![]() | ![]() |
![]() | #24 | |
Administrator ![]() ![]() Tham gia ngày: Jun 2012 Bài gởi: 157 Thanks: 2 Thanked 84 Times in 53 Posts | Mình nghĩ đoạn này có vấn đề, Trích:
| |
![]() | ![]() |
![]() | #25 | |
Moderator ![]() Tham gia ngày: Aug 2009 Đến từ: Hà Nội Bài gởi: 277 Thanks: 69 Thanked 323 Times in 145 Posts | Trích:
| |
![]() | ![]() |
![]() | #26 | |
+Thành Viên+ ![]() Tham gia ngày: Feb 2012 Đến từ: Hanoi Bài gởi: 2 Thanks: 0 Thanked 1 Time in 1 Post | Trích:
| |
![]() | ![]() |
![]() | #27 | |
Moderator ![]() Tham gia ngày: Nov 2007 Đến từ: cyber world Bài gởi: 413 Thanks: 14 Thanked 466 Times in 171 Posts | Trích:
![]() Thực ra thì phải chia 2 trường hợp, nếu nó bằng 0 thì hiển nhiên $Q_{k+1} = Q_{k}$ thỏa mãn. Nếu nó khác không thì như trên. __________________ Traum is giấc mơ. ![]() | |
![]() | ![]() |
![]() | #28 |
+Thành Viên+ ![]() Tham gia ngày: Nov 2007 Bài gởi: 13 Thanks: 1 Thanked 3 Times in 2 Posts | Ai cũng có thể tải lên các tài liệu biên soạn của Việt Nam-TST 2016 Vấn đề và giải pháp? |
![]() | ![]() |
![]() ![]() ![]() |
Bookmarks |
Ðiều Chỉnh | |
Xếp Bài | |
|
|