Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Tài Liệu > Đề Thi > Đề Thi HSG Cấp Quốc Gia

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 22-07-2012, 08:10 PM   #1
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,413
Thanks: 2,165
Thanked 4,188 Times in 1,381 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
Đề thi chọn đội tuyển quốc gia của Mỹ 2012

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA
CỦA MỸ NĂM 2012
**********************


Bài 1.

Tìm tất cả các dãy vô hạn các số nguyên dương ${{a}_{1}},{{a}_{2}},{{a}_{3}},...$ thỏa mãn đồng thời các tính chất sau:
i) ${{a}_{1}}<{{a}_{2}}<{{a}_{3}}<...$
ii) Không có các số nguyên dương $i,j,k$ nào, không nhất thiết phân biệt, thỏa mãn ${{a}_{i}}+{{a}_{j}}={{a}_{k}}.$
iii) Tồn tại vô hạn các số nguyên dương $k$ sao cho ${{a}_{k}}=2k-1.$

Bài 2.

Cho tứ giác $ABCD$ có hai đường chéo $AC=BD$ và chúng cắt nhau tại $P.$ Gọi ${{\omega }_{1}}$ và ${{O}_{1}}$ lần lượt là đường tròn ngoại tiếp tam giác $ABP$ và tâm tương ứng của nó; gọi ${{\omega }_{2}}$ và ${{O}_{2}}$ lần lượt là đường tròn ngoại tiếp tam giác $CDP$ và tâm tương ứng của nó. Đoạn $BC$ cắt ${{\omega }_{1}},{{\omega }_{2}}$ lần lượt tại $S,T.$ Gọi $M,N$ lần lượt là trung điểm của cung SP (không chứa $B$) và cung TP (không chứa $C$).
Chứng minh rằng $MN\parallel {{O}_{1}}{{O}_{2}}$.

Bài 3.

Cho hàm số $f:{{\mathbb{N}}^{+}}\to {{\mathbb{N}}^{+}}$ thỏa mãn các điều kiện sau:
i) $f(m),f(n)$ nguyên tố cùng nhau với mọi $m,n$ nguyên tố cùng nhau.
ii) $n\le f(n)\le n+2012$ với mọi số nguyên dương $n.$
Chứng minh rằng với mọi số nguyên dương $n$ và số nguyên tố $p,$ nếu $p$ chia hết $f(n)$ thì $p$ cũng chia hết $n.$

Bài 4.

Cho tam giác $ABC$ có chân các đường vuông góc kẻ từ $A,B,C$ đến các cạnh đối diện lần lượt là ${{A}_{1}},{{B}_{1}},{{C}_{1}}.$ Gọi ${{A}_{2}}$ là giao điểm của đường thẳng $BC$ và ${{B}_{1}}{{C}_{1}}$. Các điểm ${{B}_{2}},{{C}_{2}}$ xác định tương tự. Giả sử $D,E,F$ lần lượt là trung điểm của $BC,CA,AB.$
Chứng minh rằng các đường vuông góc kẻ từ $D$ đến $A{{A}_{2}},$ từ $E$ đến $B{{B}_{2}}$ và từ $F$ đến $C{{C}_{2}}$ đồng quy.

Bài 5.

Cho số hữu tỉ $x$. Chứng minh rằng tồn tại một dãy các số hữu tỉ ${{x}_{0}},{{x}_{1}},{{x}_{2}},...$ thỏa mãn
a) ${{x}_{0}}=x.$
b) Với mỗi $n\ge 1,$ ${{x}_{n+1}}=2{{x}_{n}}$ hoặc ${{x}_{n+1}}=2{{x}_{n}}+\frac{1}{n}$.
c) ${{x}_{n}}$ là số nguyên với một số số nguyên dương $n.$

Bài 6.

Cho các số thực dương $x,y,z$ thỏa mãn $xyz+xy+yz+zx=x+y+z+1$.
Chứng minh rằng
$\frac{1}{3}\left( \sqrt{\frac{1+{{x}^{2}}}{1+x}}+\sqrt{\frac{1+{{y}^ {2}}}{1+y}}+\sqrt{\frac{1+{{z}^{2}}}{1+z}} \right)\le {{\left( \frac{x+y+z}{3} \right)}^{5/8}}$
Hỏi dấu đẳng thức xảy ra khi nào?

Bài 7.

Cho tam giác $ABC$ nội tiếp đường tròn $\Omega .$ Đường phân giác trong góc $A$ cắt cạnh $BC$ và đường tròn $\Omega $ lần lượt tại $D$ và $L$. Gọi $M$ là trung điểm $BC$. Đường tròn ngoại tiếp tam giác $ADM$ lần lượt cắt các cạnh $AB,AC$ tại $Q$ và $P$. Gọi $N$ là trung điểm của đoạn $PQ$ và $H$ là hình chiếu của $L$ xuống $ND.$
Chứng minh rằng $ML$ tiếp xúc với đường tròn ngoại tiếp tam giác $HMN.$

Bài 8.

Cho số nguyên dương $n.$ Xét một bảng tam giác gồm các số nguyên không âm như sau:
  • Hàng 1: ${{a}_{0,1}}$
  • Hàng 2: ${{a}_{0,2}}\text{ }{{a}_{1,2}}$
  • Hàng 3: ${{a}_{0,3}}\text{ }{{a}_{1,3}}\text{ }{{a}_{2,3}}$
  • Hàng $n:$ ${{a}_{0,n}}\text{ }{{a}_{1,n}}\text{ }{{a}_{2,n}}\text{ }...\text{ }{{a}_{n-1,n}}$
Ta gọi một bảng tam giác như trên là “ổn định” nếu như với mọi các số không âm $i,j,k$ mà $0\le i<j<k\le n$ thì ta đều có
${{a}_{i,j}}+{{a}_{j,k}}\le {{a}_{i,k}}\le {{a}_{i,j}}+{{a}_{j,k}}+1$.
Với một dãy các số nguyên không âm và không giảm ${{s}_{1}},{{s}_{2}},{{s}_{3}},...,{{s}_{n}},$ chứng minh rằng tồn tại duy nhất một bảng tam giác ổn định xác định như trên sao cho tổng tất cả các phần tử trên dòng thứ $k$ bằng ${{s}_{k}}$ với $1\le k\le n.$

Bài 9.

Xét tập hợp $S$ gồm $n$ biến, một toán tử hai ngôi $\times $ trên tập $S$ được gọi là “đơn giản” nếu như $(x\times y)\times z=x\times (y\times z)$ với mọi $x,y,z\in S$ và $x\times y\in \left\{ x,y \right\}$ với mọi $x,y\in S$.
Xét một toán tử “đơn giản” trên tập $S,$ rõ ràng với mọi xâu là một dãy các phần tử thuộc $S$, bằng cách áp dụng các toán tử trên theo một thứ tự nhất định, đều có thể được rút gọn thành một phần tử duy nhất, chẳng hạn $xyz\to x\times (y\times z)$. Mỗi xâu được gọi là “đầy đủ” nếu như nó chứa mỗi phần tử của tập $S$ ít nhất một lần, hai xâu được gọi là “tương đương” nếu như với mọi cách chọn các toán tử “đơn giản” thì đều cho ra cùng một kết quả, chẳng hạn $xxx,xx,x$ là các xâu tương đương. Gọi $T$ là tập hợp các xâu mà bất cứ xâu đầy đủ nào cũng tương đương với đúng một phần tử của tập $T.$
Xác định số phần tử của tập hợp $T.$


*****Hết*****

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
File Kèm Theo
Kiểu File : pdf De Thi USA TST 2012.pdf (204.7 KB, 471 lần tải)
__________________
Sự im lặng của bầy mèo

thay đổi nội dung bởi: huynhcongbang, 22-07-2012 lúc 08:20 PM
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following 14 Users Say Thank You to huynhcongbang For This Useful Post:
00000 (22-07-2012), Akira Vinh HD (22-07-2012), AnhIsGod (22-07-2012), Conanvn (23-07-2012), cool hunter (30-04-2013), JokerNVT (22-07-2012), Mr_Pi (26-07-2012), n.v.thanh (22-07-2012), Samurott (23-07-2012), than-dong (16-10-2012), thanhgand (22-07-2012), thanhorg (22-07-2012), thephuong (23-07-2012), TNP (23-07-2012)
Old 22-07-2012, 08:18 PM   #2
novae
+Thành Viên Danh Dự+
 
novae's Avatar
 
Tham gia ngày: Jul 2010
Đến từ: Event horizon
Bài gởi: 2,453
Thanks: 53
Thanked 3,057 Times in 1,288 Posts
Trích:
Nguyên văn bởi huynhcongbang View Post
Bài 4.

Cho tam giác $ABC$ có chân các đường vuông góc kẻ từ $A,B,C$ đến các cạnh đối diện lần lượt là ${{A}_{1}},{{B}_{1}},{{C}_{1}}.$ Gọi ${{A}_{2}}$ là giao điểm của đường thẳng $BC$ và ${{B}_{1}}{{C}_{1}}$. Các điểm ${{B}_{2}},{{C}_{2}}$ xác định tương tự. Giả sử $D,E,F$ lần lượt là trung điểm của $BC,CA,AB.$
Chứng minh rằng các đường vuông góc kẻ từ $D$ đến $A{{A}_{2}},$ từ $E$ đến $B{{B}_{2}}$ và từ $F$ đến $C{{C}_{2}}$ đồng quy.
Gọi $H$ là trực tâm tam giác $ABC$. Áp dụng định lý Brocard cho tứ giác $BC_1B_1C$ nội tiếp đường tròn đường kính $BC$, ta suy ra $D$ là trực tâm tam giác $HAA_2$, suy ra $DH \bot AA_2$.
Vậy các đường thẳng đã cho đồng quy tại $H$.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
M.
novae is offline   Trả Lời Với Trích Dẫn
The Following 5 Users Say Thank You to novae For This Useful Post:
Akira Vinh HD (22-07-2012), huynhcongbang (22-07-2012), Mr_Pi (26-07-2012), NguyenThanhThi (22-07-2012), thanhorg (22-07-2012)
Old 22-07-2012, 08:41 PM   #3
novae
+Thành Viên Danh Dự+
 
novae's Avatar
 
Tham gia ngày: Jul 2010
Đến từ: Event horizon
Bài gởi: 2,453
Thanks: 53
Thanked 3,057 Times in 1,288 Posts
Trích:
Nguyên văn bởi huynhcongbang View Post
Bài 7.

Cho tam giác $ABC$ nội tiếp đường tròn $\Omega .$ Đường phân giác trong góc $A$ cắt cạnh $BC$ và đường tròn $\Omega $ lần lượt tại $D$ và $L$. Gọi $M$ là trung điểm $BC$. Đường tròn ngoại tiếp tam giác $ADM$ lần lượt cắt các cạnh $AB,AC$ tại $Q$ và $P$. Gọi $N$ là trung điểm của đoạn $PQ$ và $H$ là hình chiếu của $L$ xuống $ND.$
Chứng minh rằng $ML$ tiếp xúc với đường tròn ngoại tiếp tam giác $HMN.$


Trước hết, ta chứng minh được $BQ=CP$. Từ đó suy ra $MN \parallel AL$.

Gọi $I$ là trung điểm cung $PQ$ không chứa $D$ của $(ADM)$. Ta chứng minh được $I$ là trung điểm cung $BC$ không chứa $L$ của $\Omega$.

Như vậy, ta chỉ cần chứng minh $IM^2 = IN \cdot IH$.

Tứ giác $HDML$ nội tiếp nên suy ra $IH \cdot ID = IM \cdot IL \quad (1)$.
$MN \parallel DL$ nên $IL \cdot IN = IM \cdot ID \quad (2)$.

Nhân vế với vế hai đẳng thức $(1)$ và $(2)$, ta suy ra điều cần chứng minh.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
Hình Kèm Theo
Kiểu File : png USATST 2012 P7.png (21.9 KB, 657 lần tải)
__________________
M.
novae is offline   Trả Lời Với Trích Dẫn
The Following 3 Users Say Thank You to novae For This Useful Post:
huynhcongbang (22-07-2012), Mr_Pi (26-07-2012), thanhorg (22-07-2012)
Old 22-07-2012, 11:33 PM   #4
thephuong
+Thành Viên Danh Dự+
 
thephuong's Avatar
 
Tham gia ngày: May 2011
Đến từ: Biên Hòa-Đồng Nai
Bài gởi: 862
Thanks: 206
Thanked 503 Times in 295 Posts
Còn bài hình nữa chém luôn
Hình vẽ

Lời giải
Gọi $Q$ là giao điểm thứ 2 của hai đường tròn $(\omega_1)$ và $(\omega_2)$. Ta thấy rằng $\angle{QAC}=\angle{QBD}$; $\angle{QCA}=\angle{QDB}$ do đó $\Delta QAC \sim \Delta QBD$. Hơn nữa $AC=BD$ nên $\Delta QAC = \Delta QBD$. Như vậy $QA=QB; QD=QC$. Suy ra $PQ$ là phân giác ngoài góc $\angle{APB}$ hay là phân giác góc $\angle{BPC}$.
Tam giác $PBC$ có $PQ$ là phân giác $\angle BPC$; $BM$ và $CN$ là phân giác $\angle{PBC}$ và $\angle{PCB}$ nên chúng đồng quy.
Ta lại có biến đổi góc sau: $\angle{MQN} = \angle{MSP} + \angle{NTP}= \dfrac{1}{2}\left(\angle{PCT}+\angle{PBS}\right)= \dfrac{1}{2}\angle{DPC}=\angle{DQO_2}$ (vì $QD=QC$)
Gọi tia $CN$ là tia $Ct$ thì $\angle{QNt} = \angle{QDC}$. Do đó $\angle{QNt}+\angle{MQN} = 90^\circ$.
Hay $CN \perp QN$. Tương tự $BM \perp QN$ mà $BQ, BM, CN$ đồng quy nên chúng đồng quy tại trực tâm tam giác $QMN$ do đó $PQ \perp MN$ mà $PQ \perp O_1O_2$ nên có đpcm.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
Hình Kèm Theo
Kiểu File : jpg untitled.JPG (34.7 KB, 628 lần tải)
__________________
You've set my heart soaring
Ma đáng yêu
thephuong is offline   Trả Lời Với Trích Dẫn
The Following 4 Users Say Thank You to thephuong For This Useful Post:
congbang_dhsp (22-07-2012), huynhcongbang (23-07-2012), Mr_Pi (26-07-2012), thanhorg (22-07-2012)
Old 23-07-2012, 11:56 AM   #5
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,413
Thanks: 2,165
Thanked 4,188 Times in 1,381 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
Cảm ơn mọi người đã ủng hộ!
Theo mình thấy thì đề chọn đội tuyển của Mỹ có nhiều điểm giống với đề của Trung Quốc, đặc biệt chú trọng vào các bài "chứng minh tồn tại trong số học tổ hợp", giống với bài 3 và 6 IMO vừa rồi.


[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Sự im lặng của bầy mèo
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to huynhcongbang For This Useful Post:
Mr_Pi (26-07-2012)
Old 23-07-2012, 02:47 PM   #6
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,413
Thanks: 2,165
Thanked 4,188 Times in 1,381 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
Trích:
Nguyên văn bởi AnhIsGod View Post
Anh đang nói đến cuốn around gì thế? Tiết lộ đôi chút được không ạ?
Thì lần trước trong topic về GGTH IV tại TPHCM, anh có nhắc đến tài liệu đi kèm cuốn Kỷ yếu hàng năm là Around the world Vietnam Version đấy, có thể hiểu đây là: Tuyển tập các đề thi quốc gia và chọn đội tuyển quốc gia của các nước năm 2012.

Nói chung trên mathlink có đề thi nào ghi năm 2012 là trong cuốn đó sẽ có hết và 50% đề trong số đó sẽ có lời giải chi tiết.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Sự im lặng của bầy mèo
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to huynhcongbang For This Useful Post:
AnhIsGod (23-07-2012), Mr_Pi (26-07-2012)
Old 23-07-2012, 10:17 PM   #7
thephuong
+Thành Viên Danh Dự+
 
thephuong's Avatar
 
Tham gia ngày: May 2011
Đến từ: Biên Hòa-Đồng Nai
Bài gởi: 862
Thanks: 206
Thanked 503 Times in 295 Posts
Em đề nghị mọi thông tin thắc mắc về cuốn sách around hay cuốn kỉ yếu thì thắc mắc ở link này. Em sẽ xóa những post ko cần thiết, vì theard này là dành cho đề thi chọn đội tuyển Mĩ.
[Only registered and activated users can see links. ]
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
You've set my heart soaring
Ma đáng yêu
thephuong is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to thephuong For This Useful Post:
hizact (23-07-2012)
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 06:44 PM.


Powered by: vBulletin Copyright ©2000-2021, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 82.04 k/91.81 k (10.63%)]